Intradermal vaccination with a phytoglycogen nanoparticle and STING agonist induces cytotoxic T lymphocyte-mediated antitumor immunity.
NPJ Vaccines
; 9(1): 149, 2024 Aug 17.
Article
em En
| MEDLINE
| ID: mdl-39152131
ABSTRACT
A critical aspect of cancer vaccine development is the formulation with effective adjuvants. This study evaluated whether combining a cationic plant-derived nanoparticle adjuvant (Nano-11) with the clinically tested STING agonist ADU-S100 (MIW815) could stimulate anticancer immunity by intradermal vaccination. Nano-11 combined with ADU-S100 (NanoST) synergistically activated antigen-presenting cells, facilitating protein antigen cross-presentation in vitro and in vivo. Intradermal vaccination using ovalbumin (OVA) as a tumor antigen and combined with Nano-11 or NanoST prevented the development of murine B16-OVA melanoma and E.G7-OVA lymphoma tumors. The antitumor immunity was abolished by CD8+ T cell depletion but not by CD4+ T cell depletion. Therapeutic vaccination with NanoST increased mouse survival by inhibiting B16-OVA tumor growth, and this effect was further enhanced by PD-1 checkpoint blockade. Our study provides a strong rationale for developing NanoST as an adjuvant for intradermal vaccination and next-generation preventative and therapeutic cancer vaccines by STING-targeted activation.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
NPJ Vaccines
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos