Your browser doesn't support javascript.
loading
A robust time-delay selection criterion applied to convergent cross mapping.
Martin, R S; Greve, C M; Huerta, C E; Wong, A S; Koo, J W; Eckhardt, D Q.
Afiliação
  • Martin RS; DEVCOM ARL Army Research Office, Research Triangle Park, Durham, North Carolina 27709, USA.
  • Greve CM; In-Space Propulsion Branch, Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA.
  • Huerta CE; Jacobs Technology Inc., Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA.
  • Wong AS; Jacobs Technology Inc., Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA.
  • Koo JW; In-Space Propulsion Branch, Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA.
  • Eckhardt DQ; In-Space Propulsion Branch, Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA.
Chaos ; 34(9)2024 Sep 01.
Article em En | MEDLINE | ID: mdl-39231292
ABSTRACT
This work presents a heuristic for the selection of a time delay based on optimizing the global maximum of mutual information in orthonormal coordinates for embedding a dynamical system. This criterion is demonstrated to be more robust compared to methods that utilize a local minimum, as the global maximum is guaranteed to exist in the proposed coordinate system for any dynamical system. By contrast, methods using local minima can be ill-posed as a local minimum can be difficult to identify in the presence of noise or may simply not exist. The performance of the global maximum and local minimum methods are compared in the context of causality detection using convergent cross mapping using both a noisy Lorenz system and experimental data from an oscillating plasma source. The proposed heuristic for time lag selection is shown to be more consistent in the presence of noise and closer to an optimal uniform time lag selection.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chaos Assunto da revista: CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Chaos Assunto da revista: CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos