RESUMO
A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at âs=8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.
RESUMO
This Letter presents a search for quantum black-hole production using 20.3 fb-1 of data collected with the ATLAS detector in pp collisions at the LHC at âs = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Assuntos
Partículas Elementares , Modelos Teóricos , Teoria Quântica , Elétrons , MésonsRESUMO
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Δφ, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Δφ dependence of jet yields in 0.14 nb(-1) of â(s(NN))=2.76 TeV Pb+Pb collisions at the LHC for jet transverse momenta p(T)>45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Δφ was characterized by the parameter, v(2)(jet), and the ratio of out-of-plane (Δφ~π/2) to in-plane (Δφ~0) yields. Nonzero v(2)(jet) values were measured in all centrality bins for p(T)<160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
RESUMO
This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7 fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at âs=7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of α(â)P, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, α(â)P(CPC)=-0.035±0.014(stat)±0.037(syst) and α(â)P(CPV)=0.020±0.016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quark polarization.
RESUMO
Two-particle correlations in relative azimuthal angle (Δø) and pseudorapidity (Δη) are measured in sqrt[s(NN)] = 5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 µb(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (ΣE(T)(Pb)) summed over 3.1 < η < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < |Δ Î· | < 5) "near-side" (Δø ~ 0) correlation that grows rapidly with increasing ΣE(T)(Pb). A long-range "away-side" (Δø ~ π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣE(T)(Pb), is found to match the near-side correlation in magnitude, shape (in Δη and Δø) and ΣE(T)(Pb) dependence. The resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
RESUMO
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at sqrt[s] = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
RESUMO
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb(-1) of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt[s(NN)]=2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
RESUMO
A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt[s] = 7 TeV. The measurement is based on 4.7 fb(-1) of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with standard model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.
RESUMO
A search for direct pair production of supersymmetric top squarks (t(1)) is presented, assuming the t(1) decays into a top quark and the lightest supersymmetric particle, χ(1)(0), and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted standard model background of 13.5(-3.6)(+3.7)(4.4(-1.3)(+1.7)) events in two signal regions based on ∫Ldt = 4.7 fb(-1) of pp collision data taken at sqrt[s] = 7 TeV with the ATLAS detector at the LHC. An exclusion region in the t(1) versus χ(1)(0) mass plane is evaluated: 370
RESUMO
This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb(-1) of pp collisions recorded at a center-of-mass energy of sqrt[s]=7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/ϵ fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where ϵ is the monopole reconstruction efficiency. The efficiency ϵ is high and uniform in the fiducial region given by pseudorapidity |η|<1.37 and transverse kinetic energy 600-700
RESUMO
The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 [Formula: see text]b[Formula: see text] of proton-lead collisions at a nucleon-nucleon centre-of-mass energy of [Formula: see text] [Formula: see text] using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The [Formula: see text] collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the [Formula: see text] collision have been carried out using the Glauber model as well as two Glauber-Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon-nucleon collisions in the modelling of the initial state of [Formula: see text] collisions.
RESUMO
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.
RESUMO
A measurement is presented of the [Formula: see text] production cross section at [Formula: see text] = 7 TeV using [Formula: see text] collision data corresponding to an integrated luminosity of 383 [Formula: see text], collected with the ATLAS experiment at the LHC. Selection of [Formula: see text](1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, [Formula: see text], and rapidity, [Formula: see text], of the [Formula: see text](1020) meson in the fiducial region 500 [Formula: see text] 1200 MeV, [Formula: see text] 0.8, kaon [Formula: see text] 230 MeV and kaon momentum [Formula: see text] 800 MeV. The integrated [Formula: see text]-meson production cross section in this fiducial range is measured to be [Formula: see text] = 570 [Formula: see text] 8 (stat) [Formula: see text] 66 (syst) [Formula: see text] 20 (lumi) [Formula: see text].
RESUMO
Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at [Formula: see text] TeV and corresponding to an integrated luminosity of 4.7 fb[Formula: see text]. Tag-and-probe methods using events with leptonic decays of [Formula: see text] and [Formula: see text] bosons and [Formula: see text] mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.
RESUMO
This paper presents a study of the performance of the muon reconstruction in the analysis of proton-proton collisions at [Formula: see text] TeV at the LHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of [Formula: see text] meson and [Formula: see text] boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb[Formula: see text]. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.
RESUMO
A measurement of jet shapes in top-quark pair events using 1.8 fb-1 of [Formula: see text]pp collision data recorded by the ATLAS detector at the LHC is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays [Formula: see text] in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets.
RESUMO
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb-1 of [Formula: see text]pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95 % confidence level on visible cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.
RESUMO
The measurement of the jet energy resolution is presented using data recorded with the ATLAS detector in proton-proton collisions at [Formula: see text]. The sample corresponds to an integrated luminosity of 35 pb-1. Jets are reconstructed from energy deposits measured by the calorimeters and calibrated using different jet calibration schemes. The jet energy resolution is measured with two different in situ methods which are found to be in agreement within uncertainties. The total uncertainties on these measurements range from 20 % to 10 % for jets within |y|<2.8 and with transverse momenta increasing from 30 GeV to 500 GeV. Overall, the Monte Carlo simulation of the jet energy resolution agrees with the data within 10 %.
RESUMO
A measurement of the top quark pair production cross section in the final state with a hadronically decaying tau lepton and jets is presented. The analysis is based on proton-proton collision data recorded by the ATLAS experiment at the LHC, with a centre-of-mass energy of 7 TeV. The data sample corresponds to an integrated luminosity of 1.67 fb-1. The cross section is measured to be [Formula: see text] and is in agreement with other measurements and with the Standard Model prediction.
RESUMO
A measurement of splitting scales, as defined by the kT clustering algorithm, is presented for final states containing a W boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb-1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a kT cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.