Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007262

RESUMO

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Assuntos
Imunização Passiva/métodos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene pol/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
2.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29606355

RESUMO

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Assuntos
Feto/virologia , Neurônios/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/patologia , Calcinose/veterinária , Feminino , Idade Gestacional , Macaca mulatta , Imageamento por Ressonância Magnética , Necrose , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Neurônios/virologia , Gravidez , Índice de Gravidade de Doença , Vasculite/patologia , Vasculite/veterinária , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
3.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457610

RESUMO

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Assuntos
Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Animais , Líquido Cefalorraquidiano/virologia , Inflamação/imunologia , Trato Gastrointestinal Inferior/virologia , Linfonodos/virologia , Macaca mulatta , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Immunity ; 50(1): 241-252.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552025

RESUMO

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Macaca mulatta , Vacinação
5.
Cell ; 155(3): 531-9, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243013

RESUMO

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1 , Animais , Formação de Anticorpos , Feminino , Antígenos HIV/imunologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Imunidade Celular , Macaca mulatta , Masculino , Dados de Sequência Molecular , Organismos Livres de Patógenos Específicos
6.
Cell ; 151(2): 253-66, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063120

RESUMO

Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.


Assuntos
Caliciviridae/isolamento & purificação , Intestinos/virologia , Parvoviridae/isolamento & purificação , Picornaviridae/isolamento & purificação , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Caliciviridae/classificação , Caliciviridae/genética , Chlorocebus aethiops , Fezes/microbiologia , Fezes/virologia , Intestinos/microbiologia , Dados de Sequência Molecular , Parvoviridae/classificação , Parvoviridae/genética , Filogenia , Picornaviridae/classificação , Picornaviridae/genética , Reação em Cadeia da Polimerase , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Vírus da Imunodeficiência Símia/patogenicidade
7.
Nature ; 563(7731): 360-364, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30283138

RESUMO

The latent viral reservoir is the critical barrier for the development of a cure for HIV-1 infection. Previous studies have shown direct antiviral activity of potent HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) administered when antiretroviral therapy (ART) was discontinued, but it remains unclear whether bNAbs can target the viral reservoir during ART. Here we show that administration of the V3 glycan-dependent bNAb PGT121 together with the Toll-like receptor 7 (TLR7) agonist vesatolimod (GS-9620) during ART delayed viral rebound following discontinuation of ART in simian-human immunodeficiency virus (SHIV)-SF162P3-infected rhesus monkeys in which ART was initiated during early acute infection. Moreover, in the subset of monkeys that were treated with both PGT121 and GS-9620 and that did not show viral rebound after discontinuation of ART, adoptive transfer studies and CD8-depletion studies also did not reveal virus. These data demonstrate the potential of bNAb administration together with innate immune stimulation as a possible strategy for targeting the viral reservoir.


Assuntos
Anticorpos Antivirais/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/agonistas , Transferência Adotiva , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/imunologia , Antígenos CD8/deficiência , Antígenos CD8/imunologia , DNA Viral/análise , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/genética , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Pteridinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Receptor 7 Toll-Like/imunologia , Carga Viral
8.
Nature ; 564(7734): E8, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397346

RESUMO

In Fig. 4b of this Article, the x-axis labels 'PGT121' and 'GS-9620' were inadvertently swapped in both graphs. In Fig. 5a, b, 'TLR7' should have been 'GS-9620'. These figures have been corrected online.

9.
PLoS Pathog ; 17(6): e1009673, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170962

RESUMO

Pre-existing immunity to flaviviruses can influence the outcome of subsequent flavivirus infections. Therefore, it is critical to determine whether baseline DENV immunity may influence subsequent ZIKV infection and the protective efficacy of ZIKV vaccines. In this study, we investigated the impact of pre-existing DENV immunity induced by vaccination on ZIKV infection and the protective efficacy of an inactivated ZIKV vaccine. Rhesus macaques and mice inoculated with a live attenuated DENV vaccine developed neutralizing antibodies (NAbs) to multiple DENV serotypes but no cross-reactive NAbs responses to ZIKV. Animals with baseline DENV NAbs did not exhibit enhanced ZIKV infection and showed no overall reduction in ZIKV vaccine protection. Moreover, passive transfer of purified DENV-specific IgG from convalescent human donors did not augment ZIKV infection in STAT2 -/- and BALB/c mice. In summary, these results suggest that baseline DENV immunity induced by vaccination does not significantly enhance ZIKV infection or impair the protective efficacy of candidate ZIKV vaccines in these models. These data can help inform immunization strategies in regions of the world with multiple circulating pathogenic flaviviruses.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Reações Cruzadas/imunologia , Humanos , Macaca mulatta , Camundongos , Vacinas Virais/imunologia
10.
Nature ; 536(7617): 474-8, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27355570

RESUMO

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Zika virus/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Brasil , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Deleção de Genes , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Camundongos , Microcefalia/complicações , Microcefalia/virologia , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Zika virus/química , Zika virus/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia
11.
Nature ; 540(7632): 284-287, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27841870

RESUMO

The development of immunologic interventions that can target the viral reservoir in HIV-1-infected individuals is a major goal of HIV-1 research. However, little evidence exists that the viral reservoir can be sufficiently targeted to improve virologic control following discontinuation of antiretroviral therapy. Here we show that therapeutic vaccination with Ad26/MVA (recombinant adenovirus serotype 26 (Ad26) prime, modified vaccinia Ankara (MVA) boost) and stimulation of TLR7 (Toll-like receptor 7) improves virologic control and delays viral rebound following discontinuation of antiretroviral therapy in SIV-infected rhesus monkeys that began antiretroviral therapy during acute infection. Therapeutic vaccination with Ad26/MVA resulted in a marked increase in the magnitude and breadth of SIV-specific cellular immune responses in virologically suppressed, SIV-infected monkeys. TLR7 agonist administration led to innate immune stimulation and cellular immune activation. The combination of Ad26/MVA vaccination and TLR7 stimulation resulted in decreased levels of viral DNA in lymph nodes and peripheral blood, and improved virologic control and delayed viral rebound following discontinuation of antiretroviral therapy. The breadth of cellular immune responses correlated inversely with set point viral loads and correlated directly with time to viral rebound. These data demonstrate the potential of therapeutic vaccination combined with innate immune stimulation as a strategy aimed at a functional cure for HIV-1 infection.


Assuntos
Adenoviridae/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/imunologia , Vaccinia virus/genética , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Antirretrovirais/administração & dosagem , DNA Viral/análise , DNA Viral/sangue , Feminino , Vetores Genéticos/genética , Infecções por HIV/imunologia , Infecções por HIV/terapia , Imunidade Celular , Imunidade Inata , Macaca mulatta , Masculino , RNA Viral/análise , RNA Viral/sangue , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/isolamento & purificação , Fatores de Tempo , Receptor 7 Toll-Like/genética , Carga Viral/imunologia
12.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587687

RESUMO

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Adenoviridae/imunologia , Adulto , Animais , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Estados Unidos , Zika virus/imunologia , Infecção por Zika virus/imunologia
13.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132241

RESUMO

Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1.IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos , Feminino , Produtos do Gene env/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Macaca mulatta , Masculino , Mutação , Análise de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Replicação Viral
14.
PLoS Pathog ; 15(12): e1008180, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31841560

RESUMO

Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.


Assuntos
Adenoviridae/imunologia , Regulação Viral da Expressão Gênica/fisiologia , alfa-Defensinas , Células A549 , Adenoviridae/genética , Animais , Vetores Genéticos , Humanos , Camundongos
15.
J Immunol ; 201(9): 2744-2752, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249811

RESUMO

The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling-related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.


Assuntos
Vacinas Anticâncer/imunologia , Depsipeptídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Imunogenicidade da Vacina/imunologia , Melanoma Experimental/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Inibidores de Histona Desacetilases/farmacologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores
16.
Lancet ; 391(10120): 563-571, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29217375

RESUMO

BACKGROUND: A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. METHODS: We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 µg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. FINDINGS: We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. INTERPRETATION: The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. FUNDING: Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Humanos
17.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563285

RESUMO

Adenovirus (Ad) vectors are being investigated as vaccine candidates, but baseline antivector immunity exists in human populations to both human Ad (HuAd) and chimpanzee Ad (ChAd) vectors. In this study, we investigated the immunogenicity and cross-reactivity of a panel of recently described rhesus adenoviral (RhAd) vectors. RhAd vectors elicited T cells with low exhaustion markers and robust anamnestic potential. Moreover, RhAd vector immunogenicity was unaffected by high levels of preexisting anti-HuAd immunity. Both HuAd/RhAd and RhAd/RhAd prime-boost vaccine regimens were highly immunogenic, despite a degree of cross-reactive neutralizing antibodies (NAbs) between phylogenetically related RhAd vectors. We observed extensive vector-specific cross-reactive CD4 T cell responses and more limited CD8 T cell responses between RhAd and HuAd vectors, but the impact of vector-specific cellular responses was far less than that of vector-specific NAbs. These data suggest the potential utility of RhAd vectors and define novel heterologous prime-boost strategies for vaccine development.IMPORTANCE To date, most adenoviral vectors developed for vaccination have been HuAds from species B, C, D, and E, and human populations display moderate to high levels of preexisting immunity. There is a clinical need for new adenoviral vectors that are not hindered by preexisting immunity. Moreover, the development of RhAd vector vaccines expands our ability to vaccinate against multiple pathogens in a population that may have received other HuAd or ChAd vectors. We evaluated the immunogenicity and cross-reactivity of RhAd vectors, which belong to the poorly described adenovirus species G. These vectors induced robust cellular and humoral immune responses and were not hampered by preexisting anti-HuAd vector immunity. Such properties make RhAd vectors attractive as potential vaccine vectors.


Assuntos
Adenovírus Humanos/imunologia , Adenovirus dos Símios/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Produtos do Gene gag/imunologia , Imunogenicidade da Vacina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Virais/imunologia
18.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321310

RESUMO

Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required.IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice.


Assuntos
Adenoviridae , Terapia Genética/métodos , Vetores Genéticos , Infecções por HIV , HIV-1 , Transdução Genética/métodos , Animais , Feminino , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/terapia , HIV-1/genética , HIV-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
19.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298888

RESUMO

Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.


Assuntos
Adenoviridae , Vacinas contra Adenovirus , Clonagem Molecular , Vetores Genéticos , Imunogenicidade da Vacina/genética , Células A549 , Adenoviridae/genética , Adenoviridae/imunologia , Vacinas contra Adenovirus/genética , Vacinas contra Adenovirus/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Macaca mulatta , Camundongos
20.
PLoS Pathog ; 13(8): e1006487, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771605

RESUMO

Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Flavivirus/imunologia , Infecção por Zika virus/imunologia , Animais , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Flavivirus/imunologia , Infecções por Flavivirus/patologia , Macaca mulatta , Reação em Cadeia da Polimerase , Zika virus/imunologia , Infecção por Zika virus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA