Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Perfusion ; 35(5): 393-396, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31696777

RESUMO

AIM: This study was designed to quantify the influence of blood as test medium compared to water in cannula bench performance assessment. METHODS: An in vitro circuit was set-up with silicone tubing between two reservoirs. The test medium was pumped from the lower reservoir by centrifugal pump to the upper reservoir. The test-cannula was inserted in a silicone tube connected between the lower reservoir and the centrifugal pump. Flow rate and pump inlet-pressure were measured for wall-less versus thin-wall cannula using a centrifugal pump in a dynamic bench-test for an afterload of 40-60 mmHg using two media: blood 10 g/dL and 5.6 g/dL and water 0 g/dL. RESULTS: The wall-less cannula showed significantly higher flows rates as compared to the thin-wall cannula (control), with both hemoglobin concentrations and water. Indeed, for a target volume of 200-250 mL of blood (Hg 10 g/dL) in the upper reservoir, the cannula outlet pressure (P) was -14 ± 14 mmHg versus -18 ± 11 mmHg for the wall-less and control respectively; the cannula outlet flow rate (Q) was 3.91 ± 0.41 versus 3.67 ± 0.45 L/min, respectively. At the same target volume but with a Hg of 5.7 g/dL, P was -16 ± 12 mmHg versus -19 ± 12 mmHg and Q was 4 ± 0.1 versus 4 ± 0.4 L/min for the wall-less cannula and control respectively. Likewise, P and Q values with water were -1 mmHg versus -0.67 ± 0.58 mmHg and 4.17 ± 0.45 L/min versus 4.08 ± 0.47 L/min for the wall-less and control respectively. CONCLUSION: Walls-less cannula showed 5.6% less pump inlet-pressure differences calculated between blood and water, as compared to that of thin-wall cannula (-21 times). Flow differences were 6% and 10% for the walls-less and thin-wall cannula respectively. We conclude that testing the cannula performance with water is a good scenario and can overestimate the flow by a 10%. However, superiority for wall-less is preserved with both water and blood.


Assuntos
Viscosidade Sanguínea/imunologia , Cânula/normas , Veias/fisiologia , Humanos
2.
Anal Chem ; 89(18): 9643-9648, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825964

RESUMO

Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O2 and the presence of O2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O2, we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in <60 s, with separation resolution exceeding 1.0 and CVs of 8.4% for BSA-OVA and 2.4% for OVA-TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.


Assuntos
Dimetilpolisiloxanos/química , Immunoblotting/instrumentação , Immunoblotting/métodos , Técnicas Analíticas Microfluídicas , Adoção , Animais , Bovinos , Eletroforese em Gel de Poliacrilamida , Ovalbumina/química , Ovalbumina/isolamento & purificação , Tamanho da Partícula , Soroalbumina Bovina/química , Soroalbumina Bovina/isolamento & purificação , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação
3.
Antioxidants (Basel) ; 13(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38671873

RESUMO

Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the "Kligman standards" in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide's therapeutic and cosmeceutical functions. The ingredient's evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored.

4.
Gels ; 10(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920908

RESUMO

Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin B3 (niacinamide) are notably used as bio-stimulants to improve skin quality attributes at the administration site. The aim of the present study was to perform multi-parametric characterization of two novel cross-linked dermal filler formulas (HAR-1 "Instant Refine" and HAR-3 "Maxi Lift") for elucidation of the various functional impacts of vitamin B3 incorporation. Therefore, the HAR products were firstly comparatively characterized in terms of in vitro rheology, cohesivity, injectability, and resistance to chemical or enzymatic degradation (exposition to H2O2, AAPH, hyaluronidases, or xanthine oxidase). Then, the HAR products were assessed for cytocompatibility and in vitro bio-stimulation attributes in a primary dermal fibroblast model. The results showed enhanced resilience of the cohesive HAR hydrogels as compared to JUVÉDERM® VOLBELLA® and VOLUMA® reference products in a controlled degradation assay panel. Furthermore, significant induction of total collagen synthesis in primary dermal fibroblast cultures was recorded for HAR-1 and HAR-3, denoting intrinsic bio-stimulatory effects comparable or superior to those of the Radiesse® and Sculptra™ reference products. Original results of high translational relevance were generated herein using robust and orthogonal experimental methodologies (hydrogel degradation, functional benchmarking) and study designs. Overall, the reported results confirmed the dual functionalization role of vitamin B3 in cross-linked HA dermal fillers, with a significant enhancement of hydrogel system stability attributes and the deployment of potent bio-stimulatory capacities.

5.
BioTech (Basel) ; 12(1)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810442

RESUMO

Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.

6.
Pharmaceutics ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765300

RESUMO

Autologous cell therapy manufacturing timeframes constitute bottlenecks in clinical management pathways of severe burn patients. While effective temporary wound coverings exist for high-TBSA burns, any means to shorten the time-to-treatment with cytotherapeutic skin grafts could provide substantial therapeutic benefits. This study aimed to establish proofs-of-concept for a novel combinational cytotherapeutic construct (autologous/allogeneic DE-FE002-SK2 full dermo-epidermal graft) designed for significant cutaneous cell therapy manufacturing timeframe rationalization. Process development was based on several decades (four for autologous protocols, three for allogeneic protocols) of in-house clinical experience in cutaneous cytotherapies. Clinical grade dermal progenitor fibroblasts (standardized FE002-SK2 cell source) were used as off-the-freezer substrates in novel autologous/allogeneic dermo-epidermal bilayer sheets. Under vitamin C stimulation, FE002-SK2 primary progenitor fibroblasts rapidly produced robust allogeneic dermal templates, allowing patient keratinocyte attachment in co-culture. Notably, FE002-SK2 primary progenitor fibroblasts significantly outperformed patient fibroblasts for collagen deposition. An ex vivo de-epidermalized dermis model was used to demonstrate the efficient DE-FE002-SK2 construct bio-adhesion properties. Importantly, the presented DE-FE002-SK2 manufacturing process decreased clinical lot production timeframes from 6-8 weeks (standard autologous combined cytotherapies) to 2-3 weeks. Overall, these findings bear the potential to significantly optimize burn patient clinical pathways (for rapid wound closure and enhanced tissue healing quality) by combining extensively clinically proven cutaneous cell-based technologies.

7.
Bioengineering (Basel) ; 10(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37106596

RESUMO

Platelet-rich plasma (PRP) preparations have recently become widely available in sports medicine, facilitating their use in regenerative therapy for ligament and tendon affections. Quality-oriented regulatory constraints for PRP manufacturing and available clinical experiences have underlined the critical importance of process-based standardization, a pre-requisite for sound and homogeneous clinical efficacy evaluation. This retrospective study (2013-2020) considered the standardized GMP manufacturing and sports medicine-related clinical use of autologous PRP for tendinopathies at the Lausanne University Hospital (Lausanne, Switzerland). This study included 48 patients (18-86 years of age, with a mean age of 43.4 years, and various physical activity levels), and the related PRP manufacturing records indicated a platelet concentration factor most frequently in the range of 2.0-2.5. The clinical follow-up showed that 61% of the patients reported favorable efficacy outcomes (full return to activity, with pain disappearance) following a single ultrasound-guided autologous PRP injection, whereas 36% of the patients required two PRP injections. No significant relationship was found between platelet concentration factor values in PRP preparations and clinical efficacy endpoints of the intervention. The results were in line with published reports on tendinopathy management in sports medicine, wherein the efficacy of low-concentration orthobiologic interventions appears to be unrelated to sport activity levels or to patient age and gender. Overall, this study confirmed the effectiveness of standardized autologous PRP preparations for tendinopathies in sports medicine. The results were discussed in light of the critical importance of protocol standardization for both PRP manufacturing and clinical administration to reduce biological material variability (platelet concentrations) and to enhance the robustness of clinical interventions (comparability of efficacy/patient improvement).

8.
Pharmaceutics ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765301

RESUMO

Cytotherapies are often necessary for the management of symptomatic large knee (osteo)-chondral defects. While autologous chondrocyte implantation (ACI) has been clinically used for 30 years, allogeneic cells (clinical-grade FE002 primary chondroprogenitors) have been investigated in translational settings (Swiss progenitor cell transplantation program). The aim of this study was to comparatively assess autologous and allogeneic approaches (quality, safety, functional attributes) to cell-based knee chondrotherapies developed for clinical use. Protocol benchmarking from a manufacturing process and control viewpoint enabled us to highlight the respective advantages and risks. Safety data (telomerase and soft agarose colony formation assays, high passage cell senescence) and risk analyses were reported for the allogeneic FE002 cellular active substance in preparation for an autologous to allogeneic clinical protocol transposition. Validation results on autologous bioengineered grafts (autologous chondrocyte-bearing Chondro-Gide scaffolds) confirmed significant chondrogenic induction (COL2 and ACAN upregulation, extracellular matrix synthesis) after 2 weeks of co-culture. Allogeneic grafts (bearing FE002 primary chondroprogenitors) displayed comparable endpoint quality and functionality attributes. Parameters of translational relevance (transport medium, finished product suturability) were validated for the allogeneic protocol. Notably, the process-based benchmarking of both approaches highlighted the key advantages of allogeneic FE002 cell-bearing grafts (reduced cellular variability, enhanced process standardization, rationalized logistical and clinical pathways). Overall, this study built on our robust knowledge and local experience with ACI (long-term safety and efficacy), setting an appropriate standard for further clinical investigations into allogeneic progenitor cell-based orthopedic protocols.

9.
Gels ; 9(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37888381

RESUMO

While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.

10.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671025

RESUMO

Cultured primary progenitor tenocytes in lyophilized form were previously shown to possess intrinsic antioxidant properties and hyaluronan-based hydrogel viscosity-modulating effects in vitro. The aim of this study was to prepare and functionally characterize several stabilized (lyophilized) cell-free progenitor tenocyte extracts for inclusion in cytotherapy-inspired complex injectable preparations. Fractionation and sterilization methods were included in specific biotechnological manufacturing workflows of such extracts. Comparative and functional-oriented characterizations of the various extracts were performed using several orthogonal descriptive, colorimetric, rheological, mechanical, and proteomic readouts. Specifically, an optimal sugar-based (saccharose/dextran) excipient formula was retained to produce sterilizable cytotherapeutic derivatives with appropriate functions. It was shown that extracts containing soluble cell-derived fractions possessed conserved and significant antioxidant properties (TEAC) compared to the freshly harvested cellular starting materials. Progenitor tenocyte extracts submitted to sub-micron filtration (0.22 µm) and 60Co gamma irradiation terminal sterilization (5−50 kGy) were shown to retain significant antioxidant properties and hyaluronan-based hydrogel viscosity modulating effects. Hydrogel combination products displayed important efficacy-related characteristics (friction modulation, tendon bioadhesivity) with significant (p < 0.05) protective effects of the cellular extracts in oxidative environments. Overall, the present study sets forth robust control methodologies (antioxidant assays, H2O2-challenged rheological setups) for stabilized cell-free progenitor tenocyte extracts. Importantly, it was shown that highly sensitive phases of cytotherapeutic derivative manufacturing process development (purification, terminal sterilization) allowed for the conservation of critical biological extract attributes.

11.
Pharmaceutics ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678813

RESUMO

Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care.

12.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242774

RESUMO

Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.

13.
Bioengineering (Basel) ; 10(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36978683

RESUMO

Providing accurate and up-to-date practical tools enabling oversight of platelet-rich plasma (PRP) legislation and of the appropriate standards to be implemented for its manufacture and use in Europe is a demanding task. This is due to rapid medico-technological advancements, slowness and disparity in legislation updates and enforcement between member states, and many reported gray-zone practices, notably for autologous PRP use. The levels of risk associated with blood manipulation processes generally dictate the manufacturing requirements for PRP preparations, which have gradually shifted toward good manufacturing practices (GMP) for standardization and overall quality enhancement. This work firstly outlines Western European and Swiss legislation for PRP products/preparations, providing key simplified information and recommendations for medical doctors seeking to implement this biological-based therapy for safe use in hospital settings, clinics, or private offices. This work secondly shows the importance of PRP-based product manufacturing standardization, which subsequently enables sound clinical evaluation of therapeutic interventions. Although the applicable legal bases provide guidelines for GMP manufacturing infrastructure and basic process design, paramount importance is set on the definition of workflows, technical specifications, and key parameters for PRP preparation and delivery. Overall, the development of simple and robust technologies and processes for PRP preparation is critical for guaranteeing the high therapeutic quality of the intervention, in collaboration with qualified GMP manufacturing platforms. Importantly, this work aims to serve as a practical tool for clinicians based in Western Europe who are willing to appropriately (i.e., administratively and technically) implement autologous PRP treatments in musculoskeletal regenerative medicine workflows, to ensure they make informed and optimal regulatory or process-based decisions.

14.
Pharmaceutics ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37514060

RESUMO

Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 105 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.

15.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256051

RESUMO

During loading of viscoelastic tissues, part of the mechanical energy is transformed into heat that can locally increase the tissue temperature, a phenomenon known as self-heating. In the framework of mechanobiology, it has been accepted that cells react and adapt to mechanical stimuli. However, the cellular effect of temperature increase as a by-product of loading has been widely neglected. In this work, we focused on cartilage self-heating to present a 'thermo-mechanobiological' paradigm, and demonstrate how the coupling of a biomimetic temperature evolution and mechanical loading could influence cell behavior. We thereby developed a customized in vitro system allowing to recapitulate pertinent in vivo physical cues and determined the cells chondrogenic response to thermal and/or mechanical stimuli. Cellular mechanisms of action and potential signaling pathways of thermo-mechanotransduction process were also investigated. We found that co-existence of thermo-mechanical cues had a superior effect on chondrogenic gene expression compared to either signal alone. Specifically, the expression of Sox9 was significantly upregulated by application of the physiological thermo-mechanical stimulus. Multimodal transient receptor potential vanilloid 4 (TRPV4) channels were identified as key mediators of thermo-mechanotransduction process, which becomes ineffective without external calcium sources. We also observed that the isolated temperature evolution, as a by-product of loading, is a contributing factor to the cell response and this could be considered as important as the conventional mechanical loading. Providing an optimal thermo-mechanical environment by synergy of heat and loading portrays new opportunity for development of novel treatments for cartilage regeneration and can furthermore signal key elements for emerging cell-based therapies.


Assuntos
Condrócitos , Condrogênese , Sinalização do Cálcio , Condrócitos/metabolismo , Sinais (Psicologia) , Mecanotransdução Celular/fisiologia , Temperatura
16.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326468

RESUMO

Cultured autologous human articular chondrocyte (HAC) implantation has been extensively investigated for safe and effective promotion of structural and functional restoration of knee cartilage lesions. HAC-based cytotherapeutic products for clinical use must be manufactured under an appropriate quality assurance system and follow good manufacturing practices (GMP). A prospective clinical trial is ongoing in the Lausanne University Hospital, where the HAC manufacturing processes have been implemented internally. Following laboratory development and in-house GMP transposition of HAC cell therapy manufacturing, a total of 47 patients have been treated to date. The main aim of the present study was to retrospectively analyze the available manufacturing records of the produced HAC-based cytotherapeutic products, outlining the inter-individual variability existing among the 47 patients regarding standardized transplant product preparation. These data were used to ameliorate and to ensure the continued high quality of cytotherapeutic care in view of further clinical investigations, based on the synthetic analyses of existing GMP records. Therefore, a renewed risk analysis-based process definition was performed, with specific focus set on process parameters, controls, targets, and acceptance criteria. Overall, high importance of the interdisciplinary collaboration and of the manufacturing process robustness was underlined, considering the high variability (i.e., quantitative, functional) existing between the treated patients and between the derived primary HAC cell types.


Assuntos
Condrócitos , Hospitais , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Suíça
17.
Carbohydr Polym ; 280: 119025, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027127

RESUMO

We report herein a new chemical platform for coupling chitosan derivatives to antimicrobial peptide dendrimers (AMPDs) with different degrees of ramification and molecular weights via thiol-maleimide reactions. Previous studies showed that simple incorporation of AMPDs to polymeric hydrogels resulted in a loss of antibacterial activity and augmented cytotoxicity to mammalian cells. We have shown that coupling AMPDs to chitosan derivatives enabled the two compounds to act synergistically. We showed that the antimicrobial activity was preserved when incorporating AMPD conjugates into various biopolymer formulations, including nanoparticles, gels, and foams. Investigating their mechanism of action using electron and time-lapse microscopy, we showed that the AMPD-chitosan conjugates were internalized after damaging outer and inner Gram-negative bacterial membranes. We also showed the absence of AMPD conjugates toxicity to mammalian cells. This chemical technological platform could be used for the development of new membrane disruptive therapeutics to eradicate pathogens present in acute and chronic wounds.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Quitosana , Dendrímeros , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/toxicidade , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Polímeros
18.
Cartilage ; 13(1_suppl): 509S-518S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34330164

RESUMO

OBJECTIVE: A pivotal aspect of cartilage tissue engineering resides in cell culture medium supplementation, in view of maximizing in vitro cell proliferation and preserving cellular functionality. Autologous human serum (aHS) is commonly used as an inducive supplement for safe human articular chondrocyte (HAC) proliferation prior to clinical implantation. However, practical clinical use of aHS is hindered by constraining manufacturing requirements and quality assurance-driven downstream processing. The present study investigated potential alternative use of commercial human platelet lysate (hPL) supplements in HAC manufacturing workflows related to clinical therapeutic pathways. DESIGN: Differential effects of hPL, aHS, and fetal bovine serum were assessed on primary cultured HAC parameters (viability, proliferative rates, and morphology) in 2-dimensional in vitro systems. A 3-dimensional HAC pellet model served for postexpansion assessment of cellular functionality, by visualizing proteoglycan production (Alcian blue staining), and by using qRT-PCR relative quantification of chondrogenic marker (SOX9, COL2-A1, and ACAN) genetic expression. RESULTS: We found that monolayer HAC culture with hPL or aHS supplements presented similar characteristics (elongated cell morphology and nearly identical growth kinetics). Chondrogenic activity appeared as conserved in HACs expanded with human or bovine supplements, wherein histologic analysis indicated a progressive sGAG accumulation and SOX9, COL2-A1, ACAN gene expression was upregulated in 3-dimensional HAC pellet models. CONCLUSION: This study therefore supports the use of hPL as a functional equivalent and alternative to aHS for cultured HAC batch preparation, with the potential to effectively alleviate pressure on clinical and manufacturing bottlenecks in cell therapy approaches for cartilage regeneration.


Assuntos
Condrócitos , Condrogênese , Cartilagem/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Condrócitos/metabolismo , Humanos
19.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685505

RESUMO

The objective of this review is to describe the evolution of lung tissue-derived diploid progenitor cell applications, ranging from historical biotechnological substrate functions for vaccine production and testing to current investigations around potential therapeutic use in respiratory tract regenerative medicine. Such cell types (e.g., MRC-5 or WI-38 sources) were extensively studied since the 1960s and have been continuously used over five decades as safe and sustainable industrial vaccine substrates. Recent research and development efforts around diploid progenitor lung cells (e.g., FE002-Lu or Walvax-2 sources) consist in qualification for potential use as optimal and renewed vaccine production substrates and, alternatively, for potential therapeutic applications in respiratory tract regenerative medicine. Potentially effective, safe, and sustainable cell therapy approaches for the management of inflammatory lung diseases or affections and related symptoms (e.g., COVID-19 patients and burn patient severe inhalation syndrome) using local homologous allogeneic cell-based or cell-derived product administrations are considered. Overall, lung tissue-derived progenitor cells isolated and produced under good manufacturing practices (GMP) may be used with high versatility. They can either act as key industrial platforms optimally conforming to specific pharmacopoeial requirements or as active pharmaceutical ingredients (API) for potentially effective promotion of lung tissue repair or regeneration.


Assuntos
Biotecnologia/métodos , Diploide , Pulmão/citologia , Medicina Regenerativa/métodos , Infecções Respiratórias/terapia , Animais , Bancos de Espécimes Biológicos , Vacinas contra COVID-19 , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , História do Século XX , História do Século XXI , Humanos , Pulmão/fisiologia , Regeneração , Medicina Regenerativa/história , SARS-CoV-2 , Transplante de Células-Tronco , Células-Tronco/citologia , Transplante Homólogo
20.
J Cardiothorac Surg ; 16(1): 114, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902666

RESUMO

OBJECTIVES: Determine if shortening the covered section of a self-expanding bidirectional arterial cannula, can enhance retrograde flow and thus reduce the risk of lower limb ischemia. METHODS: Outlet pressure vs flow rate was determined for three cannulas types: a 15F self-expanding bidirectional cannula having a covered section of 90 mm, the same cannula but with a shorter covered section of 60 mm, and a Biomedicus cannula as control. The performances of all the cannulas were compared using a computerized flow-bench with calibrated sensors and a centrifugal pump. Water retrograde flow was determined using a tank timer technique. Anterograde and retrograde flow rate versus outlet pressure were determined at six different pump speed. RESULTS: For each of the six pump speed, both bidirectional cannulas, 60-mm covered and 90-mm covered respectively, showed higher performance than Biomedicus cannula control, as demonstrated by higher flow rate and lower pressure. We also observed that for the bidirectional cannula with shorter covered section, i.e. 60 mm coverage, provides enhanced performance as compared to a 90-mm coverage. Finally, the flow rate and the corresponding pressure can be consistently measured by our experimental set-up with low variability. CONCLUSIONS: The new configuration of a shorter covered section in a bidirectional self-expanding cannula design, may present an opportunity to overcome lower leg ischemia during extra-corporal life support with long term peripheral cannulation.


Assuntos
Cânula , Desenho de Equipamento , Isquemia/prevenção & controle , Perfusão/instrumentação , Procedimentos Cirúrgicos Cardíacos , Oxigenação por Membrana Extracorpórea , Humanos , Isquemia/etiologia , Perna (Membro)/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA