Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Physiol Endocrinol Metab ; 323(2): E123-E132, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723225

RESUMO

Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and ß-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and ß-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Tiazolidinedionas , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida , Fatores de Crescimento de Fibroblastos , Glipizida , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Peptídeos , Pioglitazona , Peçonhas
2.
Am J Physiol Endocrinol Metab ; 318(5): E613-E624, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154742

RESUMO

The angiopoietin-like protein (ANGPTL) family represents a promising therapeutic target for dyslipidemia, which is a feature of obesity and type 2 diabetes (T2DM). The aim of the present study was to determine the metabolic role of ANGPTL8 and to investigate its nutritional, hormonal, and molecular regulation in key metabolic tissues. The regulation of Angptl8 gene expression by insulin and glucose was quantified using a combination of in vivo insulin clamp experiments in mice and in vitro experiments in primary and cultured hepatocytes and adipocytes. The role of AMPK signaling was examined, and the transcriptional control of Angptl8 was determined using bioinformatic and luciferase reporter approaches. The metabolism of Angptl8 knockout mice (ANGPTL8-/-) was examined following chow and high-fat diets (HFD). Insulin acutely increased Angptl8 expression in liver and adipose tissue, which involved the CCAAT/enhancer-binding protein (C/EBPß) transcription factor. In insulin clamp experiments, glucose further enhanced Angptl8 expression in the presence of insulin in adipose tissue. The activation of AMPK signaling antagonized the effect of insulin on Angptl8 expression in hepatocytes and adipocytes. The ANGPTL8-/- mice had improved glucose tolerance and displayed reduced fed and fasted plasma triglycerides. However, there was no change in body weight or steatosis in ANGPTL8-/- mice after the HFD. These data show that ANGPTL8 plays important metabolic roles in mice that extend beyond triglyceride metabolism. The finding that insulin, glucose, and AMPK signaling regulate Angptl8 expression may provide important clues about the distinct function of ANGPTL8 in these tissues.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Células 3T3-L1 , Adenilato Quinase/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
3.
FASEB J ; 31(6): 2314-2326, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232481

RESUMO

Hepatic insulin resistance and hepatosteatosis in diet-induced obesity are associated with various metabolic diseases, yet the underlying mechanisms remain to be fully elucidated. Here we show that the expression levels of the disulfide-bond A oxidoreductase-like protein (DsbA-L) are significantly reduced in the liver of obese mice and humans. Liver-specific knockout or adenovirus-mediated overexpression of DsbA-L exacerbates or alleviates, respectively, high-fat diet-induced mitochondrial dysfunction, hepatosteatosis, and insulin resistance in mice. Mechanistically, we found that DsbA-L is localized in mitochondria and that its deficiency is associated with impairment of maximum respiratory capacity, elevated cellular oxidative stress, and increased JNK activity. Our results identify DsbA-L as a critical regulator of mitochondrial function, and its down-regulation in the liver may contribute to obesity-induced hepatosteatosis and whole body insulin resistance.-Chen, H., Bai, J., Dong, F., Fang, H., Zhang, Y., Meng, W., Liu, B., Luo, Y., Liu, M., Bai, Y., Abdul-Ghani, M. A., Li, R., Wu, J., Zeng, R., Zhou, Z., Dong, L. Q., Liu, F. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Glutationa Transferase/metabolismo , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação Enzimológica da Expressão Gênica , Técnica Clamp de Glucose , Glutationa Transferase/genética , Hepatócitos , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Consumo de Oxigênio
4.
Diabetologia ; 60(7): 1325-1332, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28331967

RESUMO

AIMS/HYPOTHESIS: This research aimed to define the pathophysiological defects responsible for the elevated fasting plasma glucose (FPG) concentration and excessive rise in post-load plasma glucose observed in individuals with impaired fasting glucose (IFG). METHODS: We used tracer techniques to quantify basal splanchnic (primarily hepatic) glucose uptake and glucose fluxes following glucose ingestion in individuals with normal glucose tolerance (NGT; n = 10) and IFG (n = 10). RESULTS: Individuals with IFG had a comparable basal rate of hepatic glucose production to those with NGT (15.2 ± 0.2 vs 18.0 ± 0.8 µmol min-1 [kg lean body mass (LBM)]-1; p = 0.09). However, they had a significantly reduced glucose clearance rate during the fasting state compared with NGT (2.64 ± 0.11 vs 3.62 ± 0.20 ml min-1 [kg LBM]-1; p < 0.01). The difference between the basal rate of glucose appearance measured with [3-3H]glucose and [1-14C]glucose, which represent basal splanchnic glucose uptake, was significantly reduced in IFG compared with NGT (1.39 ± 0.28 vs 3.16 ± 0.44 µmol min-1 [kg LBM]-1; p = 0.02). Following glucose ingestion, the total amount of exogenous glucose that appeared in the systemic circulation was not significantly different between groups. However, suppression of endogenous glucose production (EGP) was markedly impaired in individuals with IFG. CONCLUSIONS/INTERPRETATION: These results demonstrate that decreased tissue (liver) glucose uptake, not enhanced EGP, is the cause for elevated FPG concentration in individuals with IFG, while the excessive rise in plasma glucose concentration following a glucose load in these individuals is the result of impaired suppression of hepatic glucose production.


Assuntos
Glicemia/análise , Glucose/metabolismo , Fígado/metabolismo , Administração Oral , Adulto , Peso Corporal , Feminino , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Masculino , Estado Pré-Diabético/sangue , Fatores de Tempo
5.
Am J Physiol Renal Physiol ; 309(11): F889-900, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354881

RESUMO

Hyperglycemia is the primary factor responsible for the microvascular, and to a lesser extent macrovascular, complications of diabetes. Despite this well-established relationship, approximately half of all type 2 diabetic patients in the US have a hemoglobin A1c (HbA1c) ≥7.0%. This is associated in part with the side effects, i.e., weight gain and hypoglycemia, of currently available antidiabetic agents and in part with the failure to utilize medications that reverse the basic pathophysiological defects present in patients with type 2 diabetes. The kidney has been shown to play a central role in the development of hyperglycemia by excessive production of glucose throughout the sleeping hours and enhanced reabsorption of filtered glucose by the renal tubules secondary to an increase in the threshold at which glucose spills into the urine. Recently, a new class of antidiabetic agents, the sodium-glucose cotransporter 2 (SGLT2) inhibitors, has been developed and approved for the treatment of patients with type 2 diabetes. In this review, we examine their mechanism of action, efficacy, safety, and place in the therapeutic armamentarium. Since the SGLT2 inhibitors have a unique mode of action that differs from all other oral and injectable antidiabetic agents, they can be used at all stages of the disease and in combination with all other antidiabetic medications.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Túbulos Renais Proximais/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Quimioterapia Combinada , Humanos , Hipoglicemiantes/efeitos adversos , Túbulos Renais Proximais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Resultado do Tratamento
7.
Curr Diab Rep ; 12(3): 230-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22528597

RESUMO

In addition to its central role in the development of microvascular complications, hyperglycemia plays an important role in the pathogenesis of type 2 diabetes mellitus (T2DM) by means of glucotoxicity. Thus, effective glycemic control not only reduces the incidence of microvascular complications but also corrects the metabolic abnormalities that contribute to the progression of the disease. Progressive ß-cell failure and multiple side effects, including hypoglycemia and weight gain, associated with many current therapies present obstacles to the achievement of optimal and durable glycemic control in subjects with T2DM. Most recently, inhibitors of the renal sodium-glucose cotransporter have been developed to reduce the plasma glucose concentration by producing glucosuria. Because the mechanism of action of these oral antidiabetic agents is independent of ß-cell function and tissue sensitivity to insulin, they improve glycemic control while avoiding hypoglycemia and promoting weight loss. In this review, we summarize the available data concerning the mechanism of action, efficacy, and safety of this novel antidiabetic class of therapeutic agents.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/prevenção & controle , Feminino , Taxa de Filtração Glomerular , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Masculino
8.
J Diabetes Investig ; 12(11): 2002-2009, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34002953

RESUMO

AIMS/INTRODUCTION: This study aimed to investigate whether insulin resistance (IR) in individuals with type 2 diabetes undergoing intensive glycemic control determines the extent of improvement in neuropathy. MATERIALS AND METHODS: This was an exploratory substudy of an open-label, randomized controlled trial of individuals with poorly controlled type 2 diabetes treated with exenatide and pioglitazone or insulin to achieve a glycated hemoglobin <7.0% (<53 mmol/mol). Baseline IR was defined using homeostasis model assessment of IR, and change in neuropathy was assessed using corneal confocal microscopy. RESULTS: A total of 38 individuals with type 2 diabetes aged 50.2 ± 8.5 years with (n = 25, 66%) and without (n = 13, 34%) IR were studied. There was a significant decrease in glycated hemoglobin (P < 0.0001), diastolic blood pressure (P < 0.0001), total cholesterol (P < 0.01) and low-density lipoprotein (P = 0.05), and an increase in bodyweight (P < 0.0001) with treatment. Individuals with homeostasis model assessment of IR <1.9 showed a significant increase in corneal nerve fiber density (P ≤ 0.01), length (P ≤ 0.01) and branch density (P ≤ 0.01), whereas individuals with homeostasis model assessment of IR ≥1.9 showed no change. IR was negatively associated with change in corneal nerve fiber density after adjusting for change in bodyweight (P < 0.05). CONCLUSIONS: Nerve regeneration might be limited in individuals with type 2 diabetes and IR undergoing treatment with pioglitazone plus exenatide or insulin to improve glycemic control.


Assuntos
Córnea/inervação , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Resistência à Insulina/fisiologia , Regeneração Nervosa , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/etiologia , Exenatida/administração & dosagem , Feminino , Hemoglobinas Glicadas/efeitos dos fármacos , Controle Glicêmico/métodos , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Pioglitazona/administração & dosagem , Resultado do Tratamento
9.
Diabetes ; 70(6): 1303-1316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34162682

RESUMO

Adiponectin is an adipokine that exerts insulin-sensitizing and anti-inflammatory roles in insulin target tissues including liver. While the insulin-sensitizing function of adiponectin has been extensively investigated, the precise mechanism by which adiponectin alleviates diet-induced hepatic inflammation remains elusive. Here, we report that hepatocyte-specific knockout (KO) of the adaptor protein APPL2 enhanced adiponectin sensitivity and prevented mice from developing high-fat diet-induced inflammation, insulin resistance, and glucose intolerance, although it caused fatty liver. The improved anti-inflammatory and insulin-sensitizing effects in the APPL2 hepatocyte-specific KO mice were largely reversed by knocking out adiponectin. Mechanistically, hepatocyte APPL2 deficiency enhances adiponectin signaling in the liver, which blocks TNF-α-stimulated MCP-1 expression via inhibiting the mTORC1 signaling pathway, leading to reduced macrophage infiltration and thus reduced inflammation in the liver. With results taken together, our study uncovers a mechanism underlying the anti-inflammatory role of adiponectin in the liver and reveals the hepatic APPL2-mTORC1-MCP-1 axis as a potential target for treating overnutrition-induced inflammation in the liver.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adiponectina/fisiologia , Hepatite/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Movimento Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hepatite/imunologia , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout
10.
J Diabetes Investig ; 12(9): 1642-1650, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33714226

RESUMO

AIMS/INTRODUCTION: Painful diabetic peripheral neuropathy (pDPN) is associated with small nerve fiber degeneration and regeneration. This study investigated whether the presence of pDPN might influence nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. MATERIALS AND METHODS: This exploratory substudy of an open-label randomized controlled trial undertook the Douleur Neuropathique en 4 questionnaire and assessment of electrochemical skin conductance, vibration perception threshold and corneal nerve morphology using corneal confocal microscopy in participants with and without pDPN treated with exenatide and pioglitazone or basal-bolus insulin at baseline and 1-year follow up, and 18 controls at baseline only. RESULTS: Participants with type 2 diabetes, with (n = 13) and without (n = 28) pDPN had comparable corneal nerve fiber measures, electrochemical skin conductance and vibration perception threshold at baseline, and pDPN was not associated with the severity of DPN. There was a significant glycated hemoglobin reduction (P < 0.0001) and weight gain (P < 0.005), irrespective of therapy. Participants with pDPN showed a significant increase in corneal nerve fiber density (P < 0.05), length (P < 0.0001) and branch density (P < 0.005), and a decrease in the Douleur Neuropathique en 4 score (P < 0.01), but no change in electrochemical skin conductance or vibration perception threshold. Participants without pDPN showed a significant increase in corneal nerve branch density (P < 0.01) and no change in any other neuropathy measures. A change in the severity of painful symptoms was not associated with corneal nerve regeneration and medication for pain. CONCLUSIONS: This study showed that intensive glycemic control is associated with greater corneal nerve regeneration and an improvement in the severity of pain in patients with painful diabetic neuropathy.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Controle Glicêmico/normas , Hipoglicemiantes/uso terapêutico , Fibras Nervosas/fisiologia , Regeneração Nervosa , Dor/prevenção & controle , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Glicemia/análise , Estudos de Casos e Controles , Córnea/citologia , Córnea/inervação , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/epidemiologia , Neuropatias Diabéticas/patologia , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Dor/epidemiologia , Dor/patologia , Prognóstico , Catar/epidemiologia , Adulto Jovem
11.
Diabetes Metab Res Rev ; 26(4): 280-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503260

RESUMO

BACKGROUND: The aim of the study is to assess the relationship between the shape of plasma glucose concentration during the OGTT and future risk for T2DM. METHODS: 2445 non-diabetic subjects from the Botnia study received an OGTT at baseline and after 7-8 years of follow-up. RESULTS: NGT and IFG subjects who returned their plasma glucose concentration following an ingested glucose load below FPG within 60 min had increased insulin sensitivity, greater insulin secretion and lower risk for future T2DM compared to NGT and IFG subjects whose post-load plasma glucose concentration required 120 min or longer to return their plasma glucose level to FPG level. IGT subjects who had a lower plasma glucose concentration at 1-h compared to 2-h during OGTT had greater insulin sensitivity, better beta cell function and lower risk for future T2DM. CONCLUSIONS: These data suggest that the shape of glucose curve can be utilized to assess future risk for T2DM.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Teste de Tolerância a Glucose , Fatores Etários , Pressão Sanguínea/genética , Índice de Massa Corporal , Peso Corporal/genética , Colesterol/sangue , Colesterol/genética , HDL-Colesterol/sangue , HDL-Colesterol/genética , Feminino , Humanos , Insulina/sangue , Insulina/genética , Masculino , Medição de Risco , Triglicerídeos/sangue , Triglicerídeos/genética
12.
J Biomed Biotechnol ; 2010: 476279, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20445742

RESUMO

Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.


Assuntos
Resistência à Insulina/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Humanos , Músculo Esquelético/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32576561

RESUMO

INTRODUCTION: To assess the effect of exenatide and pioglitazone or basal-bolus insulin on diabetic peripheral neuropathy (DPN) in patients with poorly controlled type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: This is a substudy of the Qatar Study, an open-label, randomized controlled trial. 38 subjects with poorly controlled T2D were studied at baseline and 1-year follow-up and 18 control subjects were assessed at baseline only. A combination of exenatide (2 mg/week) and pioglitazone (30 mg/day) or glargine with aspart insulin were randomly assigned to patients to achieve an HbA1c <53 mmol/mol (<7%). DPN was assessed with corneal confocal microscopy (CCM), DN4, vibration perception and sudomotor function. RESULTS: Subjects with T2D had reduced corneal nerves, but other DPN measures were comparable with the control group. In the combination treatment arm (n=21), HbA1c decreased by 35.2 mmol/mol (3.8 %) (p<0.0001), body weight increased by 5.6 kg (p<0.0001), corneal nerve branch density increased (p<0.05), vibration perception worsened (p<0.05), and DN4 and sudomotor function showed no change. In the insulin treatment arm, HbA1c decreased by 28.7 mmol/mol (2.7 %) (p<0.0001), body weight increased by 4.6 kg (p<0.01), corneal nerve branch density and fiber length increased (p≤0.01), vibration perception improved (p<0.01), and DN4 and sudomotor function showed no change. There was no association between the change in CCM measures with change in HbA1c, weight or lipids. CONCLUSIONS: Treatment with exenatide and pioglitazone or basal-bolus insulin results in corneal nerve regeneration, but no change in neuropathic symptoms or sudomotor function over 1 year.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Exenatida/uso terapêutico , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/uso terapêutico , Peptídeos , Pioglitazona/uso terapêutico , Catar/epidemiologia , Peçonhas/uso terapêutico
14.
Curr Diab Rep ; 9(3): 193-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490820

RESUMO

The term prediabetes refers to subjects with impaired fasting glucose and/or impaired glucose tolerance who are at increased risk for type 2 diabetes mellitus. Although both types of patients are at increased risk for developing type 2 diabetes mellitus and cardiovascular disease, they manifest distinct metabolic abnormalities. In this article, we summarize the metabolic abnormalities that characterize each state and the contribution of these metabolic abnormalities to the increased risk of diabetes and cardiovascular disease.


Assuntos
Estado Pré-Diabético/fisiopatologia , Glicemia/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Intolerância à Glucose/complicações , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo
15.
Biochem J ; 409(2): 491-9, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17916065

RESUMO

Despite the considerable interest in superoxide as a potential cause of pathology, the mechanisms of its deleterious production by mitochondria remain poorly understood. Previous studies in purified mitochondria have found that the highest rates of superoxide production are observed with succinate-driven reverse-electron transfer through complex I, although the physiological importance of this pathway is disputed because it necessitates high concentrations of succinate and is thought not to occur when NAD is in the reduced state. However, very few studies have examined the rates of superoxide production with mitochondria respiring on both NADH-linked (e.g. glutamate) and complex II-linked substrates. In the present study, we find that the rates of superoxide production (measured indirectly as H2O2) with glutamate+succinate (approximately 1100 pmol of H2O2 x min(-1) x mg(-1)) were unexpectedly much higher than with succinate (approximately 400 pmol of H2O2 x min(-1) x mg(-1)) or glutamate (approximately 80 pmol of H2O2 x min(-1) x mg(-1)) alone. Superoxide production with glutamate+succinate remained high even at low substrate concentrations (<1 mM), was decreased by rotenone and was completely eliminated by FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), indicating that it must in large part originate from reverse-electron transfer through complex I. Similar results were obtained when glutamate was replaced with pyruvate, alpha-ketoglutarate or palmitoyl carnitine. In contrast, superoxide production was consistently lowered by the addition of malate (malate+succinate approximately 30 pmol of H2O2 x min(-1) x mg(-1)). We propose that the inhibitory action of malate on superoxide production can be explained by oxaloacetate inhibition of complex II. In summary, the present results indicate that reverse-electron transfer-mediated superoxide production can occur under physiologically realistic substrate conditions and suggest that oxaloacetate inhibition of complex II may be an adaptive mechanism to minimize this.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Superóxidos/metabolismo , Animais , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Malatos/metabolismo , Malatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Ácido Oxaloacético/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
16.
Curr Vasc Pharmacol ; 17(2): 153-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29032755

RESUMO

Insulin resistance (IR) is a cardinal feature of type 2 diabetes mellitus (T2DM). It also is associated with multiple metabolic abnormalities which are known cardiovascular disease (CVD) risk factors. Thus, IR not only contributes to the development of hyperglycemia in T2DM patients, but also to the elevated CVD risk. Improving insulin sensitivity is anticipated to both lower the plasma glucose concentration and decrease CVD risk in T2DM patients, independent of glucose control. We review the molecular mechanisms and metabolic consequences of IR in T2DM patients and discuss the importance of addressing IR in the management of T2DM.


Assuntos
Glicemia/metabolismo , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Resistência à Insulina , Insulina/sangue , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Hipoglicemiantes/uso terapêutico , Prognóstico , Medição de Risco , Fatores de Risco
17.
Curr Diab Rep ; 8(3): 173-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18625112

RESUMO

Insulin resistance is a characteristic feature of type 2 diabetes mellitus, obesity, and the metabolic syndrome. Increased intracellular fat content in skeletal muscle and liver associated with insulin resistance has led to the hypothesis that a mitochondrial defect in substrate oxidation exists in disorders of insulin resistance. In vivo measurements of metabolic fluxes through the tricarboxylic acid and oxidative phosphorylation with magnetic resonance spectroscopy have demonstrated multiple defects in mitochondrial function in skeletal muscle. A decrease in mitochondrial density and mitochondrial copy number has been reported in insulin-resistant individuals. However, these findings have not been a consistent observation in all studies. Similarly, an intrinsic functional defect in mitochondrial adenosine triphosphate production synthesis has been reported in some but not all studies. This review summarizes evidence that implicates a defect in mitochondrial oxidative phosphorylation and its relationship to insulin resistance in common metabolic diseases characterized by impaired insulin action.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Resistência à Insulina , Mitocôndrias/patologia , Animais , Ácidos Graxos/metabolismo , Humanos , Músculo Esquelético/metabolismo
18.
Diabetes Care ; 30(1): 89-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17192339

RESUMO

OBJECTIVE: To derive indexes for muscle and hepatic insulin sensitivity from the measurement of plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT). RESEARCH DESIGN AND METHODS: A total of 155 subjects of Mexican-American origin (58 male and 97 female, aged 18-70 years, BMI 20-65 kg/m(2)) with normal glucose tolerance (n = 100) or impaired glucose tolerance (n = 55) were studied. Each subject received a 75-g OGTT and a euglycemic insulin clamp in combination with tritiated glucose. The OGTT-derived indexes of muscle and hepatic insulin sensitivity were compared with hepatic and muscle insulin sensitivity, which was directly measured with the insulin clamp, by correlation analysis. RESULTS: The product of total area under curve (AUC) for glucose and insulin during the first 30 min of the OGTT (glucose(0-30)[AUC] x insulin(0-30)[AUC]) strongly correlated with the hepatic insulin resistance index (fasting plasma insulin x basal endogenous glucose production) (r = 0.64, P < 0.0001). The rate of decay of plasma glucose concentration from its peak value to its nadir during the OGTT divided by the mean plasma insulin concentration (dG/dt / I) strongly correlated with muscle insulin sensitivity measured with the insulin clamp (P = 0.78, P < 0.0001). CONCLUSIONS: Novel estimates for hepatic and muscle insulin resistance from OGTT data are presented for quantitation of insulin sensitivity in nondiabetic subjects.


Assuntos
Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Fígado/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Intolerância à Glucose/fisiopatologia , Hispânico ou Latino , Humanos , Insulina/sangue , Fígado/fisiopatologia , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Valores de Referência
19.
Diabetes ; 55(5): 1430-5, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16644701

RESUMO

This study was conducted to observe changes in insulin secretion and insulin action in subjects with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). A total of 319 subjects were studied with an oral glucose tolerance test (OGTT). Fasting plasma glucose and insulin concentrations were measured at baseline and every 30 min during the OGTT. Fifty-eight subjects also received a euglycemic-hyperinsulinemic clamp. Insulin sensitivity was calculated as the total glucose disposal (TGD) during the last 30 min of the clamp. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting plasma glucose and insulin concentrations. Subjects with IFG had TGD similar to normal glucose-tolerant subjects, while subjects with IGT and combined IFG/IGT had significantly reduced TGD. HOMA-IR in subjects with IFG was similar to that in subjects with combined IFG/IGT and significantly higher than HOMA-IR in subjects with IGT or NGT. Insulin secretion, measured by the insulinogenic index (DeltaI(0-30)/DeltaG(0-30)) and by the ratio of the incremental area under the curve (AUC) of insulin to the incremental AUC of glucose (0-120 min), was reduced to the same extent in all three glucose-intolerant groups. When both measurements of beta-cell function were adjusted for severity of insulin resistance, subjects with IGT and combined IFG/IGT had a significantly greater reduction in insulin secretion than subjects with IFG. Subjects with IGT and IFG have different metabolic characteristics. Differences in insulin sensitivity and insulin secretion may predict different rates of progression to type 2 diabetes and varying susceptibility to cardiovascular disease.


Assuntos
Glicemia/genética , Glicemia/metabolismo , Intolerância à Glucose/fisiopatologia , Adulto , Índice de Massa Corporal , Jejum , Feminino , Técnica Clamp de Glucose , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Humanos , Masculino , Americanos Mexicanos/genética , Pessoa de Meia-Idade , Texas , Estados Unidos , United States Department of Veterans Affairs , Veteranos
20.
Diabetes Care ; 29(5): 1130-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16644654

RESUMO

Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are intermediate states in glucose metabolism that exist between normal glucose tolerance and overt diabetes. Epidemiological studies demonstrate that the two categories describe distinct populations with only partial overlap, suggesting that different metabolic abnormalities characterize IGT and IFG. Insulin resistance and impaired beta-cell function, the primary defects observed in type 2 diabetes, both can be detected in subjects with IGT and IFG. However, clinical studies suggest that the site of insulin resistance varies between the two disorders. While subjects with IGT have marked muscle insulin resistance with only mild hepatic insulin resistance, subjects with IFG have severe hepatic insulin resistance with normal or near-normal muscle insulin sensitivity. Both IFG and IGT are characterized by a reduction in early-phase insulin secretion, while subjects with IGT also have impaired late-phase insulin secretion. The distinct metabolic features present in subjects with IFG and IGT may require different therapeutic interventions to prevent their progression to type 2 diabetes.


Assuntos
Intolerância à Glucose/etiologia , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/fisiopatologia , Glicemia/metabolismo , Jejum , Glucose/metabolismo , Intolerância à Glucose/epidemiologia , Intolerância à Glucose/fisiopatologia , Teste de Tolerância a Glucose , Homeostase , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA