Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400025, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644337

RESUMO

A novel environmentally friendly reversed-phase high-performance liquid chromatography (RP-HPLC) method has been effectively validated for simultaneously measuring a prospective conjunction of tizanidine (TIZ) and etoricoxib (ETC), the combined medicine, in rat plasma. The technique employs diclofenac potassium as the internal standard, guaranteeing dependable and precise outcomes. This study aimed to assess the impact of the suggested combination therapy on treating inflammation resulting from rheumatoid arthritis (RA) in a rat model. The procedure was performed using an Agilent series 1200 model HPLC apparatus. The chromatographic conditions consist of isocratic elution mode, C18 column with dimensions of 150 mm × 4.6 mm × 5 µm, flow rate of 1.5 mL/min, wavelength of 230 nm, temperature of 50°C, and injection volume of 10 µL. The elution was performed using a mobile phase consisting of a phosphate buffer with a pH of 3.5 and acetonitrile in a ratio of 80:20 v/v. Calibration curves were conducted for TIZ and ETC within the 1-50 µg/mL range, demonstrating linear trends with R2 values over 0.999. The effectiveness and eco-friendliness of the proposed method were evaluated using eight separate environmentally conscious metrics. The addition of TIZ and ETC to arthritic rodents amplified these effects significantly. Furthermore, TIZ and ETC significantly reduced serum levels in arthritic rodents, and safety investigations revealed normal complete blood count, liver, and renal functions. TIZ and ETC appear to have antiarthritic, anti-inflammatory, and safe combinations, making them viable future treatment options for RA that are also safe and efficacious. Following validation by United States Food and Drug Administration (US-FDA) rules, all goods met the criteria.

2.
Ann Pharm Fr ; 82(3): 420-432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37739216

RESUMO

OBJECTIVES: Allergic rhinitis and chronic idiopathic urticaria are common conditions triggered by environmental irritants, stress, and certain foods. The FDA has recently announced that the efficacy and safety of Ebastine (EBS) have been thoroughly evaluated and confirmed. This study considered using various tools to assess their greenness. We used AGREEprep, analytical eco-scale (ESA), and analytical method volume intensity (AMVI) to evaluate the greenness of the validated stability-indicating method and a forced degradation study. This allowed for easy determination and quantitation of EBS in wastewater and dosage form. METHODS: The method was established on Symmetry RP-C18 (150mm×4.6mm,5µm) using mobile phase, which can be prepared by mixing buffer solution of pH 3 with acetonitrile in a ratio of (37.5: 62.5, v/v) in addition to dissolving 0.72 gm of sodium lauryl sulfate in the final solution. The separation process was executed at a flow rate of 1.5mL/min and 5µL injection volume with UV detection at 254nm. Linearity was conducted for EBS in the 5-50µg/mL range. Different validation parameters were investigated, including accuracy, precision, robustness, and specificity. RESULTS: The limits of both detection and quantification were 0.84µg/mL and 2.57µg/mL for EBS. The recovery percentages of EBS were found to be 101.01% and 101.02% for wastewater and pharmaceutical formulations, respectively. CONCLUSION: According to International Council for Harmonisation (ICH) guidelines, a forced degradation study of EBS was evaluated, including acid, base hydrolysis, and oxidative hydrolysis using hydrogen peroxide and photolytic and thermal degradation. The highest degradation was achieved by acid hydrolysis. The safety and efficacy of EBS were evaluated via a safety comparative profile study.

3.
Mol Biol Rep ; 50(12): 9951-9961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878206

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been extensively used as cell-based treatments for decades due to their anti-inflammatory, immunomodulatory, and healing abilities. The intent of our study was to determine the efficacy of MSCs in alleviating rheumatoid arthritis (RA) induced by Complete Freund's adjuvant (CFA) and to investigate the anti-inflammatory and antioxidant characteristics of MSCs. METHODS AND RESULTS: Intrapedally injecting 0.1 ml of CFA directly into the footpad of the right hind paw daily for 2 days was used to induce RA. Arthritic rats received four doses of MSCs (1 × 106 cells/rat/dose) intravenously through the lateral tail vein. Our results showed that arthritic rats treated with MSCs exhibited reduced levels of paw edema. Furthermore, arthritic rats treated with MSCs exhibited a significant decrease in the levels of RF, CRP, IL-1ß, TNF-α, IL-17 and ADAMTS-5, along with a significant increase in the levels of IL-4 and TIMP-3. Additionally, MSCs significantly reduced the expression of TGF-ß. Both the glutathione (GSH) content and antioxidant activity of GST were enhanced by MSCs, while LPO levels were suppressed. CONCLUSION: These findings provide further evidence that MSCs are valuable in treating RA, possibly due to their anti-inflammatory and anti-oxidative properties. Thus, MSCs have potential as a more effective therapeutic strategy for treating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Células-Tronco Mesenquimais , Ratos , Animais , Antioxidantes/metabolismo , Artrite Experimental/terapia , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/terapia , Artrite Reumatoide/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo
4.
Curr Microbiol ; 81(1): 47, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135799

RESUMO

Mucormycosis is uncommon, yet it is more prevalent among individuals with underlying health conditions and those who are immunocompromised. Chitosan is studied because of its appealing properties and diverse applications. The purpose of this work is to synthesize chitosan nanoparticles (CSNPs) by ionic gelation method at various pH levels and test them against Mucor and other filamentous fungus. Field Emission Scanning Electron Microscope, Zeta sizer, Zeta potential, and Fourier Transformed Infrared Spectroscopy were used to characterize CSNPs. Hydrodynamic size increased considerably with increasing pH. Our CSNPs were tested against fungal isolates of Aspergillus Flavus RCMB 02783, Aspergillus Fumigatus RCMB 02564, and Aspergillus Niger RCMB 02588, Penicillium Notatum (NCPF 2881) and   (M. circinelloides CNRMA 03.894) causing mucromycosis. Antifungal activity was investigated using Minimum inhibitory concentration (MIC), Minimum Fungicidal concentration (MFC), Disc diffusion assay, and Antifungal inhibitory percentages methods. The best antifungal efficacy results were obtained through CSNPs prepared at pH = 4.4 at very low concentration for MIC (1.03 or 2.75 µg/mL) with 100% M. circinelloides inhibition followed by pH = 4.6 with MIC (73 or 208 µg/mL) and 93%  M. cirecinelloides inhibition %. Future usage of these materials in masks or wound dressing to avoid fungal infections, including mucormycosis following COVID-19, penicillium, and aspergillosis toxicity and infections.


Assuntos
Quitosana , Mucormicose , Nanopartículas , Penicillium chrysogenum , Humanos , Antifúngicos/farmacologia , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Mucor , Quitosana/farmacologia , Aspergillus niger , Testes de Sensibilidade Microbiana , Concentração de Íons de Hidrogênio
5.
J Liposome Res ; 30(2): 126-135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30935273

RESUMO

Triaryl-(Z)-olefin (TZO) was synthesized as a Tamoxifen (TMX) analogue for breast cancer treatment to avoid developing the resistance and toxicity of TMX. TZO was synthesized using McMurry olefination reaction and has anti-cancer activity better than TMX by two folds. In this paper, in situ pH-sensitive TZO-loaded noisome hydrogel was prepared for delivering and targeting TZO to its site of activity. Equi-molar of cholesterol and span 60 was used to prepare TZO-loaded niosomes using the Hand Shaking Method. The central composite experimental design was used to prepare differently in situ pH-sensitive TZO-loaded niosomes formulae. The formulae were done by incorporated TZO-loaded niosomes into different concentrations of chitosan and Glyceryl monooleate (GCM). Increasing the chitosan and GCM concentrations resulted in significantly increasing the viscosity and significantly decreasing the release of TZO from different formulae. The formula composed of (0.61% w/v) of chitosan and (0.23% w/v) of GCM was chosen as an optimum formula to evaluate the efficacy of TZO using Ehrlich carcinoma mice model. A significant anti-tumour effect was shown in comparison with TMX. Briefly, in situ pH-sensitive TZO-loaded niosomes could be an effective treatment for breast cancer.


Assuntos
Alcenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma de Ehrlich/tratamento farmacológico , Hidrogéis/farmacologia , Alcenos/síntese química , Alcenos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma de Ehrlich/diagnóstico por imagem , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Hidrogéis/síntese química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Lipossomos/química , Camundongos , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Tomografia Computadorizada por Raios X , Viscosidade
6.
AAPS PharmSciTech ; 21(2): 51, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900659

RESUMO

Vismodegib (VMD) is a hedgehog inhibitor which indicated for basal cell skin cancer (BCC). This work focuses on investigating the influence of isopropyl alcohol additive for topical delivering and targeting of VMD-loaded binary ethosomes for BCC treatment. Different binary ethosome formulae were prepared based on Box-Behnken design using different concentrations of phospholipid (A), cholesterol (B) and isopropyl alcohol/total alcohol ratio (C). The prepared formulae were characterized for %entrapment efficiency (R1), vesicle size (R2), %release (R3) and steady-state flux (R4). Increasing A, B and C resulted in significant increase of R1 and R2 and significant decrease of R3 and R4. The optimization was achieved and the optimum formula was selected to investigate its anti-tumour efficacy in vivo. The optimum formula showed a localized VMD and consequently a significant anti-tumour activity compared with oral VMD. Briefly, VMD-loaded binary ethosome gel could be an effective treatment of BCC with lower side effects. Graphical abstract.


Assuntos
Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Piridinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Humanos , Ratos , Resultado do Tratamento
7.
AAPS PharmSciTech ; 21(8): 326, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206259

RESUMO

Brucellosis is a common zoonotic infection, particularly in the developing world. The recommended treatment regimens for brucellosis involve the use of two medications such as doxycycline and curcumin in order to avoid relapses and prolonged use of these drugs. Doxycycline has excellent activity in the acidic phagolysosomal environment, while curcumin modulates the immune system function and macrophage activity. Due to the intracellular existence of Brucellae and the different anti-immune mechanisms of Brucella, the treatment of Brucella infection faces many limitations. The design of nanosystems is a promising treatment approach for brucellosis. The objective of this study was to design and evaluate the efficacy of in situ pH-responsive curcumin-loaded niosome hydrogel and doxycycline-loaded chitosan-sodium alginate nanoparticles as chemotherapeutic agents against brucellosis. The prepared formulae showed a spherical nano shape with a slow drug release pattern and small particle size. The prepared formulae were evaluated in vivo using Guinea pigs experimentally infected with Brucella melitensis biovar3. The prepared formula combination gave a significant high reduction rate of Brucella spleen viable count compared with that of untreated controls at p < 0.05. The results showed that the treatment schemes were not fully successful in eliminating Brucella infection in Guinea pigs; however, they significantly (p < 0.05) reduced the viable Brucella count in a shorter time and sub-therapeutic doses. Collectively the novel prepared formulae could be a successful therapy for the effective treatment of brucellosis infection at the recommended therapeutic doses. Graphical abstract.


Assuntos
Alginatos/química , Antibacterianos/uso terapêutico , Brucelose/tratamento farmacológico , Quitosana/química , Curcumina/uso terapêutico , Doxiciclina/uso terapêutico , Hidrogéis/química , Lipossomos , Nanopartículas/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Brucella melitensis/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/farmacologia , Doxiciclina/farmacologia , Cobaias
9.
Tissue Cell ; 89: 102443, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38908223

RESUMO

Leukemia is an incurable disease; it exhibits strong resistance to chemotherapy and other therapies, and it represents the most common childhood cancer and mortality. The cytotoxic of amygdalin (AMG) against the cell line of human monocytic leukemia (THP-1) was recorded, before determining other pharmacological effects. The cells were exposed to AMG for 24 hr at 37°C at different concentrations, the cytotoxic effect was determined via the MTT assay. The cells and the supernatant were collected for analyzing the oxidant/antioxidant status, apoptotic markers, and anti-microbial activity. Results showed a marked anti-proliferative cytotoxic effect of AMG which is concentration and time-dependent, the lipid peroxidation content was significantly decreased while the total thiol was increased in the treated cell line, significant up-regulation of Caspase-3 (Cas-3) and Bcl-2-associated X protein (BAX) and down-regulation of B-cell lymphoma 2 (Bcl-2). Furthermore, The bacterial activity was detected via Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Disc Diffusion assays, while the antifungal evaluation was done by the Minimum Fungicidal Concentration (MFC). Antimicrobial experiments revealed that AMG exerted potent, broad-spectrum antimicrobial effects toward a diversity of dangerously infecting pathogens. In conclusion; the prevailing research suggests that AMG is an effective anticarcinogenic and antimicrobial substance. The utilization of AMG subsequently in masks or wound dressings to prevent bacterial & fungal infections, including mucormycosis following COVID-19, as well as infections caused by penicillium and aspergillus, is a highly effective strategy in combating resistant microorganisms.

10.
Int J Pharm X ; 7: 100227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38260917

RESUMO

Diabetes mellitus is a metabolic disease that raises the odds of developing stroke. Candesartan has been used to prevent stroke due to its inhibitory effects on blood pressure, angiogenesis, oxidative damage, and apoptosis. However, oral candesartan has very limited bioavailability and efficacy due to its weak solubility and slow release. The study aimed to develop a nasal formulation of candesartan-loaded liposomes containing ethanol and propylene glycol (CLEP) to improve candesartan's delivery, release, permeation, and efficacy as a potential diabetes-associated stroke treatment. Using design expert software, different CLEP formulations were prepared and evaluated in vitro to identify the optimum formulation, which. The selected optimum formulation composed of 3.3% phospholipid, 10% ethanol, and 15% propylene glycol significantly increased the release and permeation of candesartan relative to free candesartan by a factor of 1.52 and 1.47, respectively. The optimum formulation significantly reduced the infarction after stroke in rats; decreased flexion, spontaneous motor activity, and time spent in the target quadrant by 70%, 64.71%, and 92.31%, respectively, and enhanced grip strength by a ratio of 2.3. Therefore, nasal administration of the CLEP formulation could be a potential diabetes-associated stroke treatment.

11.
RSC Adv ; 14(21): 14815-14834, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716105

RESUMO

Layered double hydroxides (LDH) are promising 2D nanomaterials being investigated for several engineering and biomedical applications. In this work, quinary Zr Al Fe Co Ni LDH and its Al Fe Co Ni LDH quaternary and Fe Co Ni LDH tertiary roots were prepared and characterized. All samples showed an aggregated, layered morphology with zero surface charge and approximately 300 nm of hydrodynamic size. BET surface area of Al Fe Co Ni LDH showed a remarkable value of 143.25 m2 g-1 as opposed to 26.2 m2 g-1 and 45.4 m2 g-1 for Fe Co Ni LDH and Zr Al Fe Co Ni LDH, respectively. The antimicrobial activity of the prepared samples was assessed against the many pathogenic bacteria; Bacillus (B.) subtilis, Escherichia (E.) coli, Haemophilus (H.) influenza, Listeria (L.) monocytogenes, Staphylococcus (S.) aureus, and Streptococcus (St.) pneumonia, and six fungal species. Furthermore, anti-biofilm activity, growth curve assay, and effect of UV illumination were examined against various pathogenic microbes. Zr Al Fe Co Ni displayed remarkable antibacterial activity, as indicated by the lowest values of the minimum inhibitory concentrations (MIC) of 4-166.7 µg mL-1. Results for fungal strains varied in terms of their susceptibilities for the different samples tested. Zn Al Fe Co Ni was able to inhibit the biofilm formation of S. aureus (96.09%), E. coli (98.32%), and Candida (C.) albicans (95.93%). This study shown that certain LDH categories, particularly Zr Al Fe Co Ni, may be promising antibacterial agents against variety of pathogenic microorganisms that cause serious infections.

12.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38423087

RESUMO

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Assuntos
Mucormicose , Pontos Quânticos , Ratos , Animais , Pontos Quânticos/química , Antifúngicos/farmacologia , Carbono/farmacologia , Carbono/química , Nitrogênio/química
13.
Int J Immunopathol Pharmacol ; 37: 3946320231172745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099672

RESUMO

OBJECTIVES: Testicular dysfunction has been associated with chronic hyperglycemia in diabetes mellitus patients. We investigated taurine's possible mechanisms and protective effects against testicular damage using a rat model of streptozotocin-induced diabetes. METHODS: Wistar rats (N = 56) were divided into seven equal groups. Untreated control rats received saline, and treated control rats received taurine 50 mg/kg orally. To induce diabetes, rats received a single dose of streptozotocin. Metformin-treated diabetic rats received metformin at a dose of 300 mg/kg. Taurine-treated groups received 10, 25, or 50 mg/kg. All treatments were provided orally once a day for 9 weeks following the streptozotocin injection. Levels of blood glucose, serum insulin, cholesterol, testicular tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) were examined. Sperm count, progressive sperm motility, and sperm abnormalities were examined. Body and relative reproductive gland weights were assessed. Histopathological examinations of the testes and epididymis were performed. RESULTS: Metformin as well as taurine (in a dose-dependent manner) resulted in significant improvements in body and relative reproductive gland weights, blood glucose, serum cholesterol, and insulin levels, as well as cytokine and oxidative parameters. These findings were associated with significant improvement in sperm count, progressive sperm motility, sperm abnormalities, and histopathological lesions in the testes and epididymis. CONCLUSION: Taurine can potentially improve hyperglycemia, hypercholesterolemia, and testicular damage associated with diabetes mellitus, possibly by controlling inflammation and oxidative stress.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Insulinas , Metformina , Ratos , Masculino , Animais , Testículo , Estreptozocina/farmacologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Glicemia , Taurina/farmacologia , Ratos Wistar , Motilidade dos Espermatozoides , Sêmen , Estresse Oxidativo , Antioxidantes/metabolismo , Metformina/farmacologia , Colesterol/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulinas/metabolismo , Insulinas/farmacologia , Insulinas/uso terapêutico , Superóxido Dismutase
14.
J Pharm Sci ; 112(2): 544-561, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36063878

RESUMO

Duloxetine HCl (DXH) is a psychiatric medicine employed for treating major depressive disorder. Nonetheless, its low water solubility, high first-pass metabolism, and acid instability diminish the absolute oral bioavailability to 40%, thus necessitating frequent administration. Therefore, the aim of the current study was to formulate DXH as nasal chitosan-grafted polymeric nanoparticles to improve its pharmacokinetic and pharmacodynamic properties. Applying the Box-Behnken design, DXH loaded PLGA-Chitosan nanoparticles (DXH-PLGA-CS-NPs) were fabricated and optimized using polylactide-co-glycolic acid (PLGA), chitosan (CS), and polyvinyl alcohol (PVA) as the independent factors. Particle size, entrapment efficiency, release percent, and cumulative amount permeated after 24 h of DXH-PLGA-CS-NPs (dependent variables) were evaluated. The in-vivo biodistribution and pharmacodynamic studies were done in male Wistar rats. The optimized DXH-PLGA-CS-NPs had a vesicle size of 122.11 nm and EE% of 66.95 with 77.65% release and Q24 of 555.34 (µg/cm2). Ex-vivo permeation study revealed 4-folds increase in DXH permeation from DXH-PLGA-CS-NPs after 24 h compared to DXH solution. Intranasal administration of optimized DXH-PLGA-CS-NPs resulted in significantly higher (p < 0.05) Cmax, AUCtotal, t1/2, and MRT in rat brain and plasma than oral DXH solution. Pharmacodynamics investigation revealed that intranasally exploited optimal DXH-PLGA-CS-NPs could be deemed a fruitful horizon for DXH as a treatment for depression.


Assuntos
Quitosana , Transtorno Depressivo Maior , Nanopartículas , Ratos , Animais , Masculino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Quitosana/metabolismo , Cloridrato de Duloxetina/farmacologia , Ratos Wistar , Portadores de Fármacos/metabolismo , Distribuição Tecidual , Tamanho da Partícula
15.
RSC Adv ; 13(37): 26069-26088, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664207

RESUMO

In order to achieve sustainable benefits for the adsorption of wastewater pollutants, spent adsorbents need to be recycled and/or valorized. This work studied a two-dimensional (2D) ZnMgFe layered double hydroxide (LDH) for ceftriaxone sodium (CTX) adsorption. This LDH showed a crystallite size of 9.8 nm, a BET surface area of 367.59 m2 g-1, and a micro-sphere-like morphology. The factors investigated in this study were the adsorbent dose, initial concentration, initial pH, and contact time. ZnMgFe LDH showed 99% removal of CTX with a maximum adsorption capacity of 241.75 mg g-1 at pH = 5. The Dubinin-Radushkevich model was found to be the most adequate isotherm model. The spent adsorbent (ZnMgFe LDH/CTX) was reused as an electro-oxidation catalyst for direct methanol fuel cells. ZnMgFe LDH/CTX showed almost a 10-fold increase in electrochemical activity for all scan rates compared to bare ZnMgFe LDH in 1 M KOH. As methanol concentration increases, the maximum current density generated by both the ZnMgFe LDH and ZnMgFe LDH/CTX samples increases. Moreover, the maximum current density for ZnMgFe LDH/CTX was 47 mA cm-2 at a methanol concentration of 3 M. Both samples possess reasonable stability over a 3600 S time window with no significant deterioration of electrochemical performance. Moreover, the antimicrobial studies showed that ZnMgFe LDH had a significant antifungal (especially Aspergillus, Mucor, and Penicillium species) and antibacterial (with greater action against Gram-positive than negative) impact on several severe infectious diseases, including Aspergillus. This study paves the way for the reuse and valorization of selected adsorbents toward circular economy requirements.

16.
Pharmaceutics ; 15(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631309

RESUMO

Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.

17.
Pharmaceutics ; 15(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37513991

RESUMO

Numerous neurological disorders have a pathophysiology that involves an increase in free radical production in the brain. Quercetin (QER) is a nutraceutical compound that shields the brain against oxidative stress-induced neurodegeneration. Nonetheless, its low oral bioavailability diminishes brain delivery. Therefore, the current study aimed to formulate QER-loaded transferosomal nanovesicles (QER-TFS) in situ gel for QER brain delivery via the intranasal route. This study explored the impacts of lipid amount, edge activator (EA) amount, and EA type on vesicle diameter, entrapment, and cumulative amount permeated through nasal mucosa (24 h). The optimum formulation was then integrated into a thermosensitive gel after its physical and morphological characteristics were assessed. Assessments of the optimized QER-TFS showed nanometric vesicles (171.4 ± 3.4 nm) with spherical shapes and adequate entrapment efficiency (78.2 ± 2.8%). The results of short-term stability and high zeta potential value (-32.6 ± 1.4 mV) of QER-TFS confirmed their high stability. Compared with the QER solution, the optimized QER-TFS in situ gel formulation exhibited sustained release behavior and augmented nasal mucosa permeability. CT scanning of rat brains demonstrated the buildup of gold nanoparticles (GNPs) in the brains of all treatment groups, with a greater level of GNPs noted in the rats given the transferosomal gel. Additionally, in vitro studies on PCS-200-014 cells revealed minimal cytotoxicity of QER-TFS in situ gel. Based on these results, the developed transferosomal nanovesicles may be a suitable nanocarrier for QER brain targeting through the intranasal route.

18.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111308

RESUMO

The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B12 nanoformula in Complete Freund's adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1ß, TNF-α, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-ß mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freund's adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.

19.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237702

RESUMO

The majority of bone and joint infections are caused by Gram-positive organisms, specifically staphylococci. Additionally, gram-negative organisms such as E. coli can infect various organs through infected wounds. Fungal arthritis is a rare condition, with examples including Mucormycosis (Mucor rhizopus). These infections are difficult to treat, making the use of novel antibacterial materials for bone diseases crucial. Sodium titanate nanotubes (NaTNTs) were synthesized using the hydrothermal method and characterized using a Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Zeta sizer. The antibacterial and antifungal activity of the NaTNT framework nanostructure was evaluated using Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Disc Diffusion assays for bacterial activity, and Minimum Fungicidal Concentration (MFC) for antifungal investigation. In addition to examining in vivo antibacterial activity in rats through wound induction and infection, pathogen counts and histological examinations were also conducted. In vitro and in vivo tests revealed that NaTNT has substantial antifungal and antibacterial effects on various bone-infected pathogens. In conclusion, current research indicates that NaTNT is an efficient antibacterial agent against a variety of microbial pathogenic bone diseases.

20.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259429

RESUMO

Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freund's adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats' Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1ß, TNF-α, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-ß mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA