RESUMO
We present a novel experimental technique that can differentiate unequivocally between chaotic light and coherent light with amplitude fluctuations, and thus permits us to characterize unambiguously the output of a laser. This technique consists of measuring the second-order intensity cross correlation at the outputs of an unbalanced Michelson interferometer. It is applied to a chaotic light source and to the output of a semiconductor nanolaser whose "standard" intensity correlation function above threshold displays values compatible with a mixture of coherent and chaotic light. Our experimental results demonstrate that the output of such lasers is not partially chaotic but is indeed a coherent state with amplitude fluctuations.
RESUMO
In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid-water/silver-are given. The results of this study can be useful in the creation of next-generation solar collectors.
RESUMO
The authors wish to make the following corrections to this paper [...].
Assuntos
Atropina , Auscultação Cardíaca , Testes de Função Cardíaca , Adulto , Diagnóstico Diferencial , Humanos , Masculino , Métodos , FonocardiografiaRESUMO
By exploiting the unique properties of periodic stratified media we demonstrate simultaneously phase matching and enhancement of the optical field under second order nonlinear interaction. This leads to a second harmonic efficiency growth faster than the fifth power of the structure length, far better than the usual quadratic behavior associated with second order nonlinear effects.
RESUMO
We consider the wave and ray dynamics of an electromagnetic field in a parabolic dome microcavity. The structure of the fundamental s wave involves a main lobe in which the electromagnetic field is confined around the focal point in an effective volume of the order of a cubic wavelength, while modes with finite angular momentum have a structure that avoids the focal area and have correspondingly larger effective volumes. The ray dynamics indicate that the fundamental s wave is robust with respect to small geometrical deformations of the cavity, while the higher order modes are unstable, giving rise to optical chaos. We discuss the incidence of these results on the modification of the spontaneous emission dynamics of an emitter placed in such a parabolic dome microcavity.