RESUMO
Photoactivated chemotherapy (PACT) is a promising cancer treatment modality that kills cancer cells via photochemical uncaging of a cytotoxic drug. Most ruthenium-based photocages used for PACT are activated with blue or green light, which penetrates sub-optimally into tumor tissues. Here, we report amide functionalization as a tool to fine-tune the toxicity and excited states of a terpyridine-based ruthenium photocage. Due to conjugation of the amide group with the terpyridine π system in the excited state, the absorption of red light (630â nm) increased 8-fold, and the photosubstitution rate rose 5-fold. In vitro, red light activation triggered inhibition of tubulin polymerization, which led to apoptotic cell death both in normoxic (21 % O2 ) and hypoxic (1 % O2 ) cancer cells. In vivo, red light irradiation of tumor-bearing mice demonstrated significant tumor volume reduction (45 %) with improved biosafety, thereby demonstrating the clinical potential of this compound.
Assuntos
Antineoplásicos , Neoplasias , Rutênio , Animais , Camundongos , Rutênio/farmacologia , Rutênio/química , Polimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , MicrotúbulosRESUMO
Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound Ru-STF31 in the glioblastoma cancer cell line, U87MG. Ru-STF31 targets nicotinamide phosphoribosyltransferase (NAMPT), an enzyme overexpressed in U87MG. Ru-STF31 is activated by red light irradiation and releases two photoproducts: the ruthenium cage and the cytotoxic inhibitor STF31. This study shows that Ru-STF31 can significantly decrease intracellular NAD+ levels in both normoxic (21% O2) and hypoxic (1% O2) U87MG cells. Strikingly, NAD+ depletion by light activation of Ru-STF31 in hypoxic U87MG cells could not be rescued by the addition of extracellular NAD+. Our data suggest an oxygen-dependent active role of the ruthenium photocage released by light activation.
Assuntos
Antineoplásicos , NAD , Nicotinamida Fosforribosiltransferase , Oxigênio , Rutênio , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Humanos , Rutênio/química , Rutênio/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Oxigênio/metabolismo , NAD/metabolismo , Citocinas/metabolismo , Luz , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese químicaRESUMO
Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.
Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Neoplasias Cutâneas , Animais , Camundongos , Paládio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/químicaRESUMO
As a platinum-containing anticancer drug, cisplatin is the keystone for treating many malignancies. Nephrotoxicity is the main dose-limiting toxicity, and several hydration therapies and supplementary strategies are utilized to reduce cisplatin-induced kidney damage, so the discovery and development of effective and safe antitumor drugs are still on the path of human health. Herein, a new four-coordinated Pt complex [Pt(TSC)Cl] using N(4)-phenyl-2-formylpyridine thiosemicarbazone (HTSC) was synthesized and characterized by single-crystal X-ray diffraction, 1HNMR, FT-IR, LC/MS and CHN elemental analysis. The Pt(TSC)Cl complex revealed antiproliferative activity against A549, MCF-7 and Caco-2 cell lines with a low micromolar IC50 (200-1.75 µM). Specifically, the Pt(TSC)Cl complex displayed more selectivity in Caco-2 cells (IC50 = 2.3 µM) than cisplatin (IC50 = 107 µM) after 48 h of treatment. Moreover, compared with cisplatin, a known nephrotoxic drug, the Pt(TSC)Cl complex exhibited lower nephrotoxicity against Hek293 normal cells. We also found that the Pt(TSC)Cl complex can effectively prevent cancer cell propagation in sub-G1 and S phases and induce apoptosis (more than 90%). Real time PCR and western analysis demonstrated that the expression pattern of apoptotic genes and proteins is according to the intrinsic apoptosis pathway through the Bax/Bcl-2-Casp9-Casp3/Casp7 axis. Collectively, our findings indicated that the Pt(TSC)Cl complex triggers apoptosis in Caco-2 cell lines, while low nephrotoxicity was shown and may be considered a useful anticancer drug candidate for colorectal cancers for further optimization and growth.
Assuntos
Antineoplásicos , Cisplatino , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Células HEK293 , Humanos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Complexes based on heavy metals have great potential for the treatment of a wide variety of cancers but their use is often limited due to toxic side effects. Here we describe the synthesis of two new cadmium complexes using N(4)-phenyl-2-formylpyridine thiosemicarbazone (L1) and 5-aminotetrazole (L2) as organic ligands and the evaluation of their anti-cancer and nephrotoxic potential in vitro. The complexes were characterized by Single-crystal X-ray data diffraction, 1HNMR, FT-IR, LC/MS spectrometry and CHN elemental analysis. Next, cytotoxicity of these cadmium complexes was evaluated in several cancer cell lines, including MCF-7 (breast), Caco-2 (colorectal) and cisplatin-resistant A549 (lung) cancer cell lines, as well as in conditionally-immortalized renal proximal tubule epithelial cell lines for evaluating nephrotoxicity compared to cisplatin. We found that both compounds were toxic to the cancer cell lines in a cell-cycle dependent manner and induced caspase-mediated apoptosis and caspase-independent cell death. Nephrotoxicity of these compounds was compared to cisplatin, a known nephrotoxic drug, in vitro. Our results demonstrate that compound {2}, but not compound {1}, exerts increased cytotoxicity in MCF-7 and A549 cell lines, combined with reduced nephrotoxic potential compared to cisplatin. Together these data make compound {2} a likely candidate for further development in cancer treatment.