Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
2.
Sensors (Basel) ; 13(3): 3394-408, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23482089

RESUMO

This study investigates how the use of a Hitman ST300 acoustic sensor can help identify the best forest stands to be used as supply sources for the production of Machine Stress-Rated (MSR) lumber. Using two piezoelectric sensors, the ST300 measures the velocity of a mechanical wave induced in a standing tree. Measurements were made on 333 black spruce (Picea mariana (Mill.) BSP) trees from the North Shore region, Quebec (Canada) selected across a range of locations and along a chronosequence of elapsed time since the last fire (TSF). Logs were cut from a subsample of 39 trees, and sawn into 77 pieces of 38 mm × 89 mm cross-section before undergoing mechanical testing according to ASTM standard D-4761. A linear regression model was developed to predict the static modulus of elasticity of lumber using tree acoustic velocity and stem diameter at 1.3 m above ground level (R2 = 0.41). Results suggest that, at a regional level, 92% of the black spruce trees meet the requirements of MSR grade 1650Fb-1.5E, whilst 64% and 34% meet the 2100Fb-1.8E and 2400Fb-2.0E, respectively. Mature stands with a TSF < 150 years had 11 and 18% more boards in the latter two categories, respectively, and therefore represented the best supply source for MSR lumber.


Assuntos
Acústica/instrumentação , Agricultura Florestal , Árvores/ultraestrutura , Canadá , Humanos , Quebeque
3.
Front Plant Sci ; 14: 1297314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186604

RESUMO

Drought frequency and intensity are projected to increase with climate change, thus amplifying stress on forest trees. Resilience to drought implicates physiological traits such as xylem conductivity and wood anatomical traits, which are related to growth and wood density. Integrating drought-stress response traits at the juvenile stage into breeding criteria could help promote the survival of planted seedlings under current and future climate and thus, improve plantation success. We assessed in greenhouse the influence of drought-induced stress on 600 two-year-old white spruce (Picea glauca) seedlings from 25 clonal lines after two consecutive growing seasons. Three levels of drought-induced stress were applied: control, moderate and severe. Seedlings were also planted at a 45° angle to clearly separate compression from normal wood. We looked at the phenotypic and genetic effects of drought stress on xylem specific hydraulic conductivity, lumen diameter, tracheid diameter and length, and the number of pits per tracheid in the normal wood. We detected no significant effects of drought stress except for tracheid length, which decreased with increasing drought stress. We found low to high estimates of trait heritability, which generally decreased with increasing drought stress. Genetic correlations were higher than phenotypic correlations for all treatments. Specific conductivity was genetically highly correlated positively with lumen diameter and tracheid length under all treatments. Tracheid length and diameter were always negatively correlated genetically, indicating a trade-off in resource allocation. Moderate to high genetic correlations sometimes in opposite direction were observed between physico-anatomical and productivity traits, also indicating trade-offs. A large variation was observed among clones for all physico-anatomical traits, but clonal ranks were generally stable between control and drought-induced treatments. Our results indicate the possibility of early screening of genetic material for desirable wood anatomical attributes under normal growing conditions, thus allowing to improve the drought resilience of young trees.

4.
Sensors (Basel) ; 11(6): 5716-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163922

RESUMO

Engineered wood products for structural use must meet minimum strength and stiffness criteria. This represents a major challenge for the industry as the mechanical properties of the wood resource are inherently variable. We report on a case study that was conducted in a laminated veneer lumber (LVL) mill in order to test the potential of an acoustic sensor to predict structural properties of the wood resource prior to processing. A population of 266 recently harvested aspen logs were segregated into three sub-populations based on measurements of longitudinal acoustic speed in wood using a hand tool equipped with a resonance-based acoustic sensor. Each of the three sub-populations were peeled into veneer sheets and graded for stiffness with an ultrasonic device. The average ultrasonic propagation time (UPT) of each subpopulation was 418, 440 and 453 microseconds for the green, blue, and red populations, respectively. This resulted in contrasting proportions of structural veneer grades, indicating that the efficiency of the forest value chain could be improved using acoustic sensors. A linear regression analysis also showed that the dynamic modulus of elasticity (MOE) of LVL was strongly related to static MOE (R(2) = 0.83), which suggests that acoustic tools may be used for quality control during the production process.


Assuntos
Acústica , Monitoramento Ambiental/métodos , Árvores , Madeira/química , Algoritmos , Canadá , Elasticidade , Indústrias , Modelos Estatísticos , Análise de Regressão , Estresse Mecânico , Telemetria , Fatores de Tempo
5.
PeerJ Comput Sci ; 7: e672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604516

RESUMO

Airborne laser scanning (ALS) has gained importance over recent decades for multiple uses related to the cartography of landscapes. Processing ALS data over large areas for forest resource estimation and ecological assessments requires efficient algorithms to filter out some points from the raw data and remove human-made structures that would otherwise be mistaken for natural objects. In this paper, we describe an algorithm developed for the segmentation and cleaning of electrical network facilities in low density (2.5 to 13 points/m2) ALS point clouds. The algorithm was designed to identify transmission towers, conductor wires and earth wires from high-voltage power lines in natural landscapes. The method is based on two priors i.e. (1) the availability of a map of the high-voltage power lines across the area of interest and (2) knowledge of the type of transmission towers that hold the conductors along a given power line. It was tested on a network totalling 200 km of wires supported by 415 transmission towers with diverse topographies and topologies with an accuracy of 98.6%. This work will help further the automated detection capacity of power line structures, which had previously been limited to high density point clouds in small, urbanised areas. The method is open-source and available online.

6.
Tree Physiol ; 37(11): 1554-1563, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985379

RESUMO

The reduction of competition through thinning increases radial growth in the stem and roots of many conifer species. However, not much is known about the effect of thinning on the dynamics of wood formation and intra-annual development of the growth ring, especially in the roots, which are an essential part of the tree for stability and resource acquisition. The aim of this study was to evaluate the effect of an experimental thinning on the dynamics and phenology of xylogenesis in the stem and roots of black spruce and balsam fir. Experimental and control trees were selected in two mature even-aged stands, one black spruce (Picea mariana (Mill.) BSP) and one balsam fir (Abies balsamea (L.) Mill.). Wood microcores were collected weekly in the stem and roots from May to October for a period of 4 years. The onset and ending of each cell differentiation phase were computed, as well as growth rate and total cell production. Results show that thinning increased the cell production rate of stem and roots of black spruce and balsam fir. This higher daily growth rate caused an increase in the total number of cells produced by the cambium. The intensity of the treatment was sufficient to significantly increase light availability for residual trees, but insufficient to modify soil temperature and water content to a point at which a significant change in the timing or duration of xylogenesis would be induced. Thus, thinning increased cell production rate and total number of cells produced in both stem and roots, but did not result in a change in the phenology of wood formation that could lead to increased risks of frost damage in the spring or autumn.


Assuntos
Abies/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Quebeque , Taiga
7.
PeerJ ; 3: e873, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870769

RESUMO

The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as 'Milton's Law of resource availability and allocation,' have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for 'Milton's Law,' since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above-ground resource partitioning.

8.
PLoS One ; 10(8): e0136674, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313689

RESUMO

Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). For this purpose, lumber value recovery (LVR), an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest.


Assuntos
Acer , Betula , Agricultura Florestal/métodos , Madeira , Agricultura Florestal/economia , Agricultura Florestal/estatística & dados numéricos , Modelos Teóricos , Quebeque , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA