Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 116: 81-90, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29410242

RESUMO

AIMS: Ethanol has acute negative inotropic and arrhythmogenic effects. The underlying mechanisms, however, are largely unknown. Sarcoplasmic reticulum Ca2+-leak is an important mechanism for reduced contractility and arrhythmias. Ca2+-leak can be induced by oxidative stress and Ca2+/Calmodulin-dependent protein kinase II (CaMKII). Therefore, we investigated the influence of acute ethanol exposure on excitation-contraction coupling in atrial and ventricular cardiomyocytes. METHODS AND RESULTS: Isolated human atrial and murine atrial or ventricular cardiomyocytes were preincubated for 30 min and then superfused with control solution or solution containing ethanol. Ethanol had acute negative inotropic and positive lusitropic effects in human atrial muscle strips and murine ventricular cardiomyocytes. Accordingly, Ca2+-imaging indicated lower Ca2+-transient amplitudes and increased SERCA2a activity, while myofilament Ca2+-sensitivity was reduced. SR Ca2+-leak was assessed by measuring Ca2+-sparks. Ethanol induced severe SR Ca2+-leak in human atrial cardiomyocytes (calculated leak: 4.60 ±â€¯0.45 mF/F0 vs 1.86 ±â€¯0.26 in control, n ≥ 80). This effect was dose-dependent, while spontaneous arrhythmogenic Ca2+-waves increased ~5-fold, as investigated in murine cardiomyocytes. Delayed afterdepolarizations, which can result from increased SR Ca2+-leak, were significantly increased by ethanol. Measurements using the reactive oxygen species (ROS) sensor CM-H2DCFDA showed increased ROS-stress in ethanol treated cells. ROS-scavenging with N-acetylcysteine prevented negative inotropic and positive lusitropic effects in human muscle strips. Ethanol-induced Ca2+-leak was abolished in mice with knockout of NOX2 (the main source for ROS in cardiomyocytes). Importantly, mice with oxidation-resistant CaMKII (Met281/282Val mutation) were protected from ethanol-induced Ca2+-leak. CONCLUSION: We show for the first time that ethanol acutely induces strong SR Ca2+-leak, also altering excitation-contraction coupling. Acute negative inotropic effects of ethanol can be explained by reduced systolic Ca2+-release. Mechanistically, ROS-production via NOX2 and oxidative activation of CaMKII appear to play central roles. This provides a mechanism for the arrhythmogenic and negative inotropic effects of ethanol and suggests a druggable target (CaMKII).


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Etanol/efeitos adversos , Acoplamento Excitação-Contração , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ativação Enzimática , Humanos , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
2.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284725

RESUMO

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

3.
ACS Med Chem Lett ; 11(3): 249-257, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184953

RESUMO

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against Trypanosoma brucei, plus 31 new compounds, against a variety of protozoan parasites including Trypanosoma cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA