Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proteomics ; 19(21-22): e1900010, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419058

RESUMO

While aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man1-3 GlcNAc2 Fuc0-1 ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade. PMGs, particularly Man2-3 GlcNAc2 Fuc1 , are prominent features of 29 cancer cell lines, but the PMG level varies dramatically across and within the cancer types (1.0-50.2%). Analyses of paired (tumor/non-tumor) and stage-stratified tissues demonstrate that PMGs are significantly enriched in tumor tissues from several cancer types including liver cancer (p = 0.0033) and colorectal cancer (p = 0.0017) and is elevated as a result of prostate cancer and chronic lymphocytic leukaemia progression (p < 0.05). Surface expression of paucimannosidic epitopes is demonstrated on human glioblastoma cells using immunofluorescence while biosynthetic involvement of N-acetyl-ß-hexosaminidase is indicated by quantitative proteomics. This intriguing association between protein paucimannosylation and human cancers warrants further exploration to detail the biosynthesis, cellular location(s), protein carriers, and functions of paucimannosylation in tumorigenesis and metastasis.


Assuntos
Manose/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Progressão da Doença , Glicosilação , Humanos , Espectrometria de Massas em Tandem
2.
Mol Cell Proteomics ; 16(5): 743-758, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28461410

RESUMO

The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcß1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.


Assuntos
Mucinas Gástricas/química , Polissacarídeos/química , Antígenos de Grupos Sanguíneos/química , Cromatografia Líquida , Epitopos/metabolismo , Mucinas Gástricas/metabolismo , Humanos , Mucina-5AC/química , Mucina-5AC/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28289177

RESUMO

The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcß1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.

4.
Biochim Biophys Acta ; 1860(8): 1795-808, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26721331

RESUMO

BACKGROUND: Terminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLe(X)). SLe(X) overexpression is associated with tumor aggressive phenotype and patients' poor prognosis. METHODS: MKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors. RESULTS: Our results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from α2-6 towards α2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe(X) and the concomitant activation. SLe(X) and RON co-expression was validated in gastric tumors. CONCLUSION: The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation. GENERAL SIGNIFICANCE: This study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Antígenos CD15/biossíntese , Proteínas de Neoplasias/biossíntese , Polissacarídeos/biossíntese , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Glicômica , Humanos , Antígenos CD15/genética , Proteínas de Neoplasias/genética , Polissacarídeos/genética , Receptores Proteína Tirosina Quinases/genética , Antígeno Sialil Lewis X , Sialiltransferases/biossíntese , Sialiltransferases/genética , Neoplasias Gástricas/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase
5.
Glycobiology ; 27(12): 1099-1108, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973482

RESUMO

Juvenile idiopathic arthritis (JIA) encompasses all forms of chronic idiopathic arthritis that arise before age 16. Previous studies have found JIA to be associated with lower Fc galactosylation of circulating IgG, but the overall spectrum of glycan changes and the net impact on IgG function are unknown. Using ultra performance liquid chromatography (UPLC), we compared IgG glycosylation in 54 subjects with recent-onset untreated JIA with 98 healthy pediatric controls, paired to biophysical profiling of affinity for 20 IgG receptors using a high-throughput multiplexed microsphere assay. Patients with JIA exhibited an increase in hypogalactosylated and hyposialylated IgG glycans, but no change in fucosylation or bisection, together with alteration in the spectrum of IgG ligand binding. Supervised machine learning demonstrated a robust capacity to discriminate JIA subjects from controls using either glycosylation or binding data. The binding signature was driven predominantly by enhanced affinity for Fc receptor like protein 5 (FcRL5), a noncanonical Fc receptor expressed on B cells. Affinity for FcRL5 correlated inversely with galactosylation and sialylation, a relationship confirmed through enzymatic manipulation. These results demonstrate the capacity of combined structural and biophysical IgG phenotyping to define the overall functional impact of IgG glycan changes and implicate FcRL5 as a potential cellular sensor of IgG glycosylation.


Assuntos
Artrite Juvenil , Sítios de Ligação de Anticorpos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Receptores Fc , Adolescente , Artrite Juvenil/sangue , Artrite Juvenil/imunologia , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Masculino , Receptores Fc/sangue , Receptores Fc/imunologia
6.
J Proteome Res ; 15(9): 3255-65, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27428249

RESUMO

The dromedary camel (Camelus dromedarius) is an agriculturally important species of high economic value but of low reproductive efficiency. Serum and IgG N-glycosylation are affected by physiological and pathogenic changes and might therefore be a useful diagnostic tool in camel livestock management. This study presents the first comprehensive annotation of the N-glycome from dromedary camel serum as well as their single-domain and conventional antibodies and its subsequent application for camel pregnancy diagnostics. N-glycans were released by PNGaseF, labeled with 2-aminobenzamide (2-AB), and analyzed by hydrophilic interaction liquid chromatography with fluorescent detection (HILIC-UPLC-FLD), enzymatic sequencing and mass spectrometry (MS). The use of a high-throughput robotic platform for sample preparation allowed the rapid generation of glycomics data from pregnant (n = 8) and nonpregnant (n = 8) camels of the Majaheem and Wadha breed. IgG N-glycans dominate the glycan profile of camel serum and present a mixture of core-fucosylated and noncore-fucosylated N-glycans which can contain N-glycolylneuraminic and N-acetylneuraminic acid. Significant pregnancy-associated but breed-independent increases in galactosylation, core-fucosylation, sialylation, and decreases in serum O-acetylation were observed. The monitoring of IgG and serum N-glycosylation presents an attractive complementary test for camel pregnancy diagnostics and presents an interesting tool for biomarker discovery in camel health and breeding.


Assuntos
Glicômica/métodos , Imunoglobulina G/metabolismo , Polissacarídeos/análise , Soro/metabolismo , Animais , Biomarcadores/análise , Camelus , Cromatografia Líquida , Diagnóstico , Feminino , Glicosilação , Espectrometria de Massas , Polissacarídeos/metabolismo , Gravidez
7.
J Biol Chem ; 290(38): 22991-3008, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26203194

RESUMO

Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation.


Assuntos
Glipicanas/química , Adulto , Cristalografia por Raios X , Glicosilação , Glipicanas/genética , Glipicanas/metabolismo , Células HEK293 , Humanos , Estrutura Terciária de Proteína
8.
PLoS Genet ; 9(1): e1003225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382691

RESUMO

Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC) in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS) in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS) results identified 9 genome-wide significant loci (P<2.27 × 10(-9)) in the discovery analysis and two of the same loci (B4GALT1 and MGAT3) in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3), while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3). However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis) and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma). Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842). Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein using GWAS. The results may also provide an explanation for the reported pleiotropy and antagonistic effects of loci involved in autoimmune diseases and haematological cancer.


Assuntos
Doenças Autoimunes , Pleiotropia Genética , Glicosiltransferases/genética , Neoplasias Hematológicas , Imunoglobulina G , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glicosilação , Glicosiltransferases/sangue , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética
10.
J Proteome Res ; 13(2): 385-94, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24359113

RESUMO

Galactose intoxication and over-restriction in galactosemia may affect glycosylation pathways and cause multisystem effects. In this study, we describe an applied hydrophilic interaction chromatography ultra-performance liquid chromatography high-throughput method to analyze whole serum and extracted IgG N-glycans with measurement of agalactosylated (G0), monogalactosylated (G1), and digalactosylated (G2) structures as a quantitative measure of galactose incorporation. This was applied to nine children with severe galactosemia (genotype Q188R/Q188R) and one child with a milder variant (genotype S135L/S135L). The profiles were also compared with those obtained from three age-matched children with PMM2-CDG (congenital disorder of glycosylation type Ia) and nine pediatric control samples. We have observed that severe N-glycan assembly defects correct in the neonate following dietary restriction of galactose. However, treated adult galactosemia patients continue to exhibit ongoing N-glycan processing defects. We have now applied informative galactose incorporation ratios as a method of studying the presence of N-glycan processing defects in children with galactosemia. We identified N-glycan processing defects present in galactosemia children from an early age. For G0/G1, G0/G2, and (G0/G1)/G2 ratios, the difference noted between galactosemia patients and controls was found to be statistically significant (p = 0.002, 0.01, and 0.006, respectively).


Assuntos
Galactosemias/metabolismo , Polissacarídeos/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Feminino , Humanos , Lactente , Masculino
11.
Sci Rep ; 14(1): 25372, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455640

RESUMO

Endometriosis is a chronic systemic disease, which results in endometrial-type tissue growing outside the uterus, and affects approximately 10% of reproductive-aged women worldwide. Its aetiology is poorly understood, and there is currently no long-term cure. Development and persistence of the disease depend on several coexisting factors including the vaginal microbiome. However, the role played by this important entity in endometriosis and its systemic involvement is not fully understood. Here, we investigated the vaginal microbiota, the serum and urine glycome, and antibody glycosylation in endometriosis patients. We reveal an endometriosis-specific vaginal microbiota in patients, being distinct from that present in a control group. Endometriosis patients were typified by a loss of the dominant Lactobacillus species, i.e. Lactobacillus iners, increased bacterial diversity and the presence of species such as Anaerococcus senegalensis, Prevotella jejuni, Porphyromonas bennonis and Anaerococcus octavius. The presence of trigalactosylated and triantennary serum glycans and urine core fucosylated mono-antennary glycans from IgG correlated with the vaginal presence of the bacterium A. senegalensis in endometriosis patients. Urine glycans did not differ in endometriosis, but urine IgG identified four novel sulfated glycans differing from serum IgG indicating functional relevance. Our findings contribute to understanding the relationships between the vaginal microbiota and the serum and urine glycome on the one hand, and endometriosis on the other. Further functional studies are warranted.


Assuntos
Endometriose , Microbiota , Polissacarídeos , Vagina , Humanos , Endometriose/urina , Endometriose/microbiologia , Endometriose/sangue , Feminino , Vagina/microbiologia , Adulto , Polissacarídeos/urina , Polissacarídeos/sangue , Glicosilação , Imunoglobulina G/sangue , Imunoglobulina G/urina
12.
J Proteome Res ; 12(1): 444-54, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23151259

RESUMO

The majority of proteins present in human serum/plasma are glycoproteins, validating this fluid as an ideal starting material for N-glycan analysis and discovery of potential biomarkers. The glycoprotein content for both serum and plasma is very similar, except for proteins removed in the coagulation process, including fibrinogen. Our aim was to characterize fibrinogen glycosylation in order to determine its contribution to differences between serum and plasma N-glycomes. N-Glycans from human fibrinogen were released, labeled, and analyzed by HILIC-HPLC and MS. Structural characterization of fibrinogen subunits revealed that the α chain was not N-glycosylated, whereas ß and γ contained identical oligosaccharide structures, mainly biantennary digalactosylated monosialylated structures (A2G2S1) and biantennary digalactosylated disialylated structures (A2G2S2). Blood was collected from five healthy volunteers into four testing tubes: silicone-coated glass for serum and EDTA, Na-heparin, and Li-heparin glass tubes for plasma. N-Glycans were analyzed using the high-throughput HILIC-HPLC method. N-Glycan profiles from serum and plasma samples differed largely in glycans identified in fibrinogen, suggesting that this glycoprotein represents a major factor distinguishing these body fluids. This result emphasizes the important of consistent body fluid collection practices in biomarker discovery studies.


Assuntos
Proteínas Sanguíneas , Fibrinogênio/análogos & derivados , Polissacarídeos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Fibrinogênio/química , Fibrinogênio/isolamento & purificação , Glicoproteínas/sangue , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Oligossacarídeos/química , Polissacarídeos/sangue , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Biochim Biophys Acta ; 1820(9): 1347-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22178561

RESUMO

BACKGROUND: Non-invasive biomarkers, such as those from serum, are ideal for disease prognosis, staging and monitoring. In the past decade, our understanding of the importance of glycosylation changes with disease has evolved. SCOPE OF REVIEW: We describe potential biomarkers derived from serum glycoproteins for liver, pancreatic, prostate, ovarian, breast, lung and stomach cancers. Methods for glycan analysis have progressed and newly developed high-throughput platform technologies have enabled the analysis of large cohorts of samples in an efficient manner. We also describe this evolution and trends to follow in the future. MAJOR CONCLUSIONS: Many convincing examples of aberrant glycans associated with cancer have come about from glycosylation analyses. Most studies have been carried out to identify changes in serum glycan profiles or through the isolation and identification of glycoproteins that contain these irregular glycan structures. In a majority of cancers the fucosylation and sialylation expression are found to be significantly modified. Therefore, these aberrations in glycan structures can be utilized as targets to improve existing cancer biomarkers. GENERAL SIGNIFICANCE: The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. Furthermore, the high-throughput and reproducible nature of the chromatography platform have highlighted extensive applications in biomarker discovery and allowed integration of glycomics with other -omics fields, such as proteomics and genomics, making systems glycobiology a reality. This article is part of a Special Issue entitled Glycoproteomics.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Polissacarídeos/fisiologia , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Sequência de Carboidratos , Glicômica/tendências , Glicosilação , Humanos , Modelos Biológicos , Neoplasias/sangue , Neoplasias/metabolismo , Polissacarídeos/sangue , Polissacarídeos/metabolismo
14.
Hum Mol Genet ; 20(24): 5000-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21908519

RESUMO

The majority of human proteins are post-translationally modified by covalent addition of one or more complex oligosaccharides (glycans). Alterations in glycosylation processing are associated with numerous diseases and glycans are attracting increasing attention both as disease biomarkers and as targets for novel therapeutic approaches. Using a recently developed high-throughput high-performance liquid chromatography (HPLC) analysis method, we have reported, in a pilot genome-wide association study of 13 glycan features in 2705 individuals from three European populations, that polymorphisms at three loci (FUT8, FUT6/FUT3 and HNF1A) affect plasma levels of N-glycans. Here, we extended the analysis to 33 directly measured and 13 derived glycosylation traits in 3533 individuals and identified three novel gene association (MGAT5, B3GAT1 and SLC9A9) as well as replicated the previous findings using an additional European cohort. MGAT5 (meta-analysis association P-value = 1.80 × 10(-10) for rs1257220) encodes a glycosyltransferase which is known to synthesize the associated glycans. In contrast, neither B3GAT1 (rs7928758, P = 1.66 × 10(-08)) nor SLC9A9 (rs4839604, P = 3.50 × 10(-13)) had previously been associated functionally with glycosylation of plasma proteins. Given the glucuronyl transferase activity of B3GAT1, we were able to show that glucuronic acid is present on antennae of plasma glycoproteins underlying the corresponding HPLC peak. SLC9A9 encodes a proton pump which affects pH in the endosomal compartment and it was recently reported that changes in Golgi pH can impair protein sialylation, giving a possible mechanism for the observed association.


Assuntos
Estudos de Associação Genética , Glucuronosiltransferase/genética , N-Acetilglucosaminiltransferases/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/sangue , Trocadores de Sódio-Hidrogênio/genética , População Branca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida de Alta Pressão , Marcadores Genéticos , Glicosilação , Humanos , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Adulto Jovem
15.
Anal Chem ; 85(18): 8841-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23919734

RESUMO

One of today's key challenges is the ability to decode the functions of complex carbohydrates in various biological contexts. To generate high-quality glycomics data in a high-throughput fashion, we developed a robotized and low-cost N-glycan analysis platform for glycoprofiling of immunoglobulin G antibodies (IgG), which are central players of the immune system and of vital importance in the biopharmaceutical industry. The key features include (a) rapid IgG affinity purification and sample concentration, (b) protein denaturation and glycan release on a multiwell filtration device, (c) glycan purification on solid-supported hydrazide, and (d) glycan quantification by ultra performance liquid chromatography. The sample preparation workflow was automated using a robotic liquid-handling workstation, allowing the preparation of 96 samples (or multiples thereof) in 22 h with excellent reproducibility and, thus, should greatly facilitate biomarker discovery and glycosylation monitoring of therapeutic IgGs.


Assuntos
Anticorpos Anti-Idiotípicos/análise , Automação Laboratorial/métodos , Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina G/análise , Glicosilação
16.
Rheumatology (Oxford) ; 52(9): 1572-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23681398

RESUMO

OBJECTIVE: Glycosylation is the most common post-translational modification and is altered in disease. The typical glycosylation change in patients with inflammatory arthritis (IA) is a decrease in galactosylation levels on IgG. The aim of this study is to evaluate the effect of anti-TNF therapy on whole serum glycosylation from IA patients and determine whether these alterations in the glycome change upon treatment of the disease. METHODS: Serum samples were collected from 54 IA patients before treatment and at 1 and 12 months after commencing anti-TNF therapy. N-linked glycans from whole serum samples were analysed using a high-throughput hydrophilic interaction liquid chromatography-based method. RESULTS: Glycosylation on the serum proteins of IA patients changed significantly with anti-TNF treatment. We observed an increase in galactosylated glycans from IgG, also an increase in core-fucosylated biantennary galactosylated glycans and a decrease in sialylated triantennary glycans with and without outer arm fucose. This increase in galactosylated IgG glycans suggests a reversing of the N-glycome towards normal healthy profiles. These changes are strongly correlated with decreasing CRP, suggesting a link between glycosylation changes and decreases in inflammatory processes. CONCLUSION: Glycosylation changes in the serum of IA patients on anti-TNF therapy are strongly associated with a decrease in inflammatory processes and reflect the effect of anti-TNF on the immune system.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Proteínas Sanguíneas/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Antirreumáticos/farmacologia , Artrite Psoriásica/sangue , Artrite Reumatoide/sangue , Feminino , Glicosilação/efeitos dos fármacos , Humanos , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade
17.
Glycoconj J ; 30(2): 137-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22922975

RESUMO

Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.


Assuntos
Oligossacarídeos/química , Glicosilação , Humanos , Espectrometria de Massas , Análise em Microsséries , Processamento de Proteína Pós-Traducional
18.
Arthritis Rheum ; 64(9): 3025-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22549726

RESUMO

OBJECTIVE: Rheumatoid arthritis is associated with an excess of agalactosylated (G0) IgG that is considered relatively proinflammatory. Assessment of this association in juvenile idiopathic arthritis (JIA) is complicated by age-dependent IgG glycan variation. The aim of this study was to conduct the first large-scale survey of IgG glycans in healthy children and patients with JIA, with a focus on early childhood, the time of peak JIA incidence. METHODS: IgG glycans from healthy children and disease-modifying antirheumatic drug-naive patients with JIA were characterized using high-performance liquid chromatography. Agalactosylated glycans were quantitated with reference to monogalactosylated (G1) species. Associations were sought between the G0:G1 ratio and disease characteristics. RESULTS: Among healthy children ages 9 months to 16 years (n = 165), the G0:G1 ratio was highly age dependent, with the ratio peaking to 1.19 in children younger than age 3 years and declining to a nadir of 0.83 after age 10 years (Spearman's ρ = 0.60, P < 0.0001). In patients with JIA (n = 141), the G0:G1 ratio was elevated compared with that in control subjects (1.32 versus 1.02; P < 0.0001). The G0:G1 ratio corrected for age was abnormally high in all JIA subtypes (enthesitis-related arthritis was not assessed), most strikingly in systemic JIA. Glycosylation aberrancy was comparable in patients with and those without antinuclear antibodies and in both early- and late-onset disease and exhibited at most a weak correlation with markers of inflammation. CONCLUSION: IgG glycosylation is skewed toward proinflammatory G0 variants in healthy children, in particular during the first few years of life. This deviation is exaggerated in patients with JIA. The role for IgG glycan variation in immune function in children, including the predilection of JIA for early childhood, remains to be defined.


Assuntos
Artrite Juvenil/imunologia , Imunoglobulina G/metabolismo , Adolescente , Artrite Juvenil/metabolismo , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Masculino
19.
Mol Cell Proteomics ; 10(10): M111.010090, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653738

RESUMO

All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously. Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.


Assuntos
Glicômica/métodos , Glicoproteínas/química , Ensaios de Triagem em Larga Escala , Imunoglobulina G/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fucose/metabolismo , Variação Genética , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Imunoglobulina G/genética , Imunoglobulina G/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Polissacarídeos/química , População , ortoaminobenzoatos/química
20.
J Proteome Res ; 11(3): 1821-31, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22256781

RESUMO

Glycosylation is highly variable depending on many environmental factors. Using our fully quantitative high-throughput normal phase hydrophilic interaction liquid chromatography platform we have identified glycosylation changes associated with medication in the plasma N-glycome from three different population cohorts: ORCADES from the Orkney Islands in Scotland and CROATIA-Vis and CROATIA-Korcula from the Croatian islands of Vis and Korcula. Associations between glycosylation and the use of hormones (oral contraceptives, hormone replacement therapy), nonsteroidal anti-inflammatory drugs (aspirin and other NSAIDs), oral steroids (prednisolone) and steroid inhalers (beclomethasone) were investigated. Significant differences associated with usage of oral contraceptives were found with increased core-fucosylated biantennary glycans. Decreases in core-fucosylated biantennary glycans, core-fucosylated triantennary glycans with outer-arm fucose, and high mannosylated glycans were associated with the use of anti-inflammatory drugs. All of the changes in glycosylation were independent of blood group status. In conclusion, hormones and anti-inflammatory medication were associated with changes in glycosylation, possibly as a result of the modulatory effect of these drugs on the inflammatory response. In general, cancer is associated with inflammation, and many glycoproteins in the plasma are acute phase related to the host response. These preliminary data indicate the importance of correcting the levels of glycans used as biomarkers for the effects of medication.


Assuntos
Sistema ABO de Grupos Sanguíneos/sangue , Anti-Inflamatórios não Esteroides/farmacologia , Hormônios/farmacologia , Polissacarídeos/sangue , Proteoma/metabolismo , Esteroides/farmacologia , Sistema ABO de Grupos Sanguíneos/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Glicômica , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA