RESUMO
Despite their importance in urban drainage systems, gully pot internal processes have received little scientific study. Therefore, gully pot contents were examined to gain a basic understanding of these processes and to establish the decomposition characteristics of the contents ex situ. Moisture content, organic matter content, enzyme activity and pH were measured to investigate seasonal and geographical effects, in addition to a 5-week composting trial to determine the rate and characteristics of decomposition. Little difference was observed in the content processes, especially between seasons, and the composting trial illustrated organic content decreased at an average rate of 0.1 g of organic matter per 13 g of organic matter per day. The results from this study indicate an as yet unknown initial decomposition rate. Activity monitored between gully pots also suggests they are relatively similar systems across space and time; enabling gully contents to be evaluated universally in future research.
Assuntos
Biodegradação Ambiental , Eliminação de Resíduos , SoloRESUMO
PURPOSE: Previous studies on dysbiosis and pouchitis using conventional culture techniques have been disappointing because of inherent limitations associated with the technique. This study was designed to use terminal restriction fragment length polymorphism to evaluate patients with and without pouchitis. METHODS: Bacterial microbiota in 20 pouch patients (15 healthy and 5 with inflamed) were studied. DNA was extracted from feces, and polymerase chain reaction was performed using primers (V6-V8 region) that were modified at the 5' end with cyanine dyes. Amplicons were digested with merozoite surface protein-1 enzyme. The restricted fragments were analyzed by capillary electrophoresis, and the electrophenograms were studied. Electrophenograms provide information about operational taxonomic units, which correspond to specific organisms. Principal component analysis was performed to identify dominant and important operational taxonomic units in the 20 patients. Bacterial diversity and counts of these operational taxonomic units were compared in the two groups of patients. RESULTS: Total bacterial diversity in patients with pouchitis was similar to that in patients with healthy pouches (16 (11-20) vs. 12 (9-13), P = 0.279). Using principal component analysis, 29 operational taxonomic units were found to be important. Bacterial counts of seven dominant organisms (operational taxonomic unit 79 (enterococci), 85 (Pantoea), 88 (Enterobacteriaceae), 90 (eubacteria), 91 (Pseudomonas), 146 (clostridia), and 148 (bacilli)) were similar in patients with pouchitis and those with a healthy pouch (P > 0.05). Seventeen (operational taxonomic unit 73 (Leptospira), 93 (Pseudoalteromonas), 96, 100 (Desulfosporosinus), 114, 121, 134, 137, 141 (Microcystis), 159, 174 (Methylobacter), 193 (uncultured proteobacteria), 232, 376, 381, 414, and 465) of the remaining 22 nondominant organisms were seen exclusively in patients with pouchitis. The majority of these organisms were novel. CONCLUSION: Terminal restriction fragment length polymorphism can be used to identify candidate organisms that may be associated with pouchitis.