RESUMO
Pendred syndrome is a recessively inherited disorder with the hallmark features of congenital deafness and thyroid goitre. By some estimates, the disorder may account for upwards of 10% of hereditary deafness. Previous genetic linkage studies localized the gene to a broad interval on human chromosome 7q22-31.1. Using a positional cloning strategy, we have identified the gene (PDS) mutated in Pendred syndrome and found three apparently deleterious mutations, each segregating with the disease in the respective families in which they occur. PDS produces a transcript of approximately 5 kb that was found to be expressed at significant levels only in the thyroid. The predicted protein, pendrin, is closely related to a number of known sulphate transporters. These studies provide compelling evidence that defects in pendrin cause Pendred syndrome thereby launching a new area of investigation into thyroid physiology, the pathogenesis of congenital deafness and the role of altered sulphate transport in human disease.
Assuntos
Proteínas de Transporte/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras , Mutação , Sulfatos/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/genética , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Mapeamento Cromossômico , Clonagem Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Linhagem , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transportadores de Sulfato , SíndromeRESUMO
Four patients with proved Cushing's disease underwent spontaneous clinical and biochemical remission. They were part of an 11-patient group treated with methods that allowed spontaneous remission to be observed. Each patient was treated differently, one each with metyrapone tartrate, ketoconazole, bilateral adrenalectomy and adrenal autotransplantation, and no treatment. Spontaneous remission occurred 9 months to 5 years after diagnosis as evidenced by restoration of normal adrenal function occurring symptomatically in two patients and advent to hypoadrenalism with addisonian crisis in the two others. We conclude that spontaneous remission in Cushing's disease may not be a rare entity, although its actual incidence has yet to be established.
Assuntos
Síndrome de Cushing/fisiopatologia , Adolescente , Adulto , Síndrome de Cushing/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Remissão EspontâneaRESUMO
Adrenal response to iv administration of 1-24 ACTH (250 micrograms) was examined in normal volunteers under various conditions. The effect of basal cortisol levels was examined by performing the tests at 0800 h with and without pretreatment with dexamethasone. The effect of time of day was evaluated by performing the tests at 0800 h and at 1600 h, eliminating possible basal cortisol influence by pretreatment with dexamethasone. In the first set of tests, despite significantly different baseline levels, 30-min cortisol levels were not different (618 +/- 50 vs. 590 +/- 52 nmol/L). Afternoon cortisol levels in response to ACTH were found to be significantly higher than morning levels at 5 min (254 +/- 50 vs. 144 +/- 36 nmol/L, p less than 0.01) and at 15 min (541 +/- 61 vs. 433 +/- 52 nmol/L, p less than 0.02). This difference in response was no longer notable at 30 min (629 +/- 52 and 591 +/- 52 nmol/L). We tried also to determine the lowest ACTH dose which will elicit a maximal cortisol response. No difference was found in cortisol levels at 30 and 60 min in response to 250 and 5 micrograms 1-24 ACTH. Using 1 micrograms ACTH, the 30-min response did not differ from that to 250 micrograms (704 +/- 72 vs. 718 +/- 55 nmol/L, respectively). However, the 60-min response to 1 microgram was significantly lower (549 +/- 61 vs. 842 +/- 110 nmol/L, p less than 0.01). Using this low dose ACTH test (1 microgram, measuring 30-min cortisol level), we were able to develop a much more sensitive ACTH test, which enabled us to differentiate a subgroup of patients on long-term steroid treatment who responded normally to the regular 250 micrograms test, but had a reduced response to 1 microgram. The stability of 1-24 ACTH in saline solution, kept at 4 C, was checked. ACTH was found to be fully stable after 2 hs in a concentration of 5 micrograms/ml in glass tube and 0.5 micrograms/ml in plastic tube. It was also found to be fully stable, both immunologically and biologically, for 4 months, under these conditions. We conclude that the 30-min cortisol response to ACTH is constant, unrelated to basal cortisol level or time of day. It is therefore the best criterion for measuring adrenal response in the short ACTH test. The higher afternoon responses at 5 and 15 min suggest greater adrenal sensitivity in the afternoon, but further studies are needed to clarify this issue.(ABSTRACT TRUNCATED AT 400 WORDS)
Assuntos
Ritmo Circadiano , Cosintropina/farmacologia , Hidrocortisona/sangue , Adulto , Idoso , Cosintropina/administração & dosagem , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Valores de Referência , Esteroides/uso terapêutico , Fatores de TempoRESUMO
PURPOSE: Amiodarone hydrochloride is an iodine-rich drug effective in the control of various tachyarrhythmias. It is known to cause refractory to thyrotoxicosis, which usually does not respond to regular antithyroid drugs. Lithium bicarbonate is a medication used to treat psychiatric disorders; it also influences thyroid production and release of hormones. We tried it in combination with propylthiouracil (PTU) for the treatment of amiodarone-induced thyrotoxicosis. PATIENTS AND METHODS: Twenty-one patients were studied. The first group (n = 5) was treated by amiodarone withdrawal only. The second group (n = 7) received PTU (300 to 600 mg), and the third (n = 9) PTU (300 mg) and lithium (900 to 1350 mg) daily. Patient selection was not randomized. The PTU + lithium group had more severe symptoms and signs of thyrotoxicosis, as well as thyroxine levels at least 50% above the upper limit of normal. They also had been on a longer course of amiodarone treatment (34.3 +/- 11.9 months) than the PTU-only (11.4 +/- 7.5) and the no-treatment (7.8 +/- 4.2) groups. RESULTS: While there was no difference between the first two groups in time until recovery (10.6 +/- 4.0 versus 11.6 +/- 0.5 weeks, respectively), the group receiving lithium normalized their thyroid function tests in only 4.3 +/- 0.5 weeks (P < 0.01 versus both other groups). T3 levels normalized even earlier-by 3 weeks of lithium treatment. No adverse effects of lithium were encountered, and the medication was stopped 4 to 6 weeks after achieving a normal clinical and biochemical state. CONCLUSIONS: We conclude that lithium is a useful and safe medication for treatment of iodine-induced thyrotoxicosis caused by amiodarone. We would reserve this treatment for severe cases only. Further studies are needed to find out whether in patients with this troublesome complication lithium therapy could permit continuation of amiodarone treatment.