Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 203: 110997, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684518

RESUMO

A novel study on biodegradation of 30 mg L-1 of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) mixture (celecoxib, diclofenac and ibuprofen) by two wood-rot fungi; Ganoderma applanatum (GA) and Laetiporus sulphureus (LS) was investigated for 72 h. The removal efficiency of celecoxib, diclofenac and ibuprofen were 98, 96 and 95% by the fungal consortium (GA + LS). Although, both GA and LS exhibited low removal efficiency (61 and 73% respectively) on NSAIDs. However, 99.5% degradation of the drug mixture (NSAIDs) was achieved on the addition of the fungal consortium (GA + LS) to the experimental set-up. Overall, LS exhibited higher degradation efficiency; 92, 87, 79% on celecoxib, diclofenac and ibuprofen than GA with 89, 80 and 66% respectively. Enzyme analyses revealed significant induction of 201, 180 and 135% in laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by the fungal consortium during degradation of the NSAIDs respectively. The experimental data showed the best goodness of fit when subjected to Langmuir (R2 = 0.980) and Temkin (R2 = 0.979) isotherm models which suggests monolayer and heterogeneous nature exhibited by the mycelia during interactions with NSAIDs. The degradation mechanism followed pseudo-second-order kinetic model (R2 = 0.987) indicating the strong influence of fungal biomass in the degradation of NSAIDs. Furthermore, Gas Chromatography-Mass Spectrometry (GCMS) and High-Performance Liquid Chromatography (HPLC) analyses confirmed the degraded metabolic states of the NSAIDs after treatment with GA, LS and consortium (GA + LS). Hence, the complete removal of NSAIDs is best achieved in an economical and eco-friendly way with the use of fungi consortium.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Poluentes Ambientais/análise , Ganoderma/enzimologia , Ganoderma/crescimento & desenvolvimento , Lignina/metabolismo , Madeira/microbiologia , Anti-Inflamatórios não Esteroides/metabolismo , Biodegradação Ambiental , Biomassa , Poluentes Ambientais/metabolismo , Indução Enzimática/efeitos dos fármacos , Cinética , Lacase/biossíntese , Modelos Biológicos , Peroxidases/biossíntese
2.
Colloids Surf B Biointerfaces ; 217: 112675, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792528

RESUMO

The promising potentials of biocatalytic treatment processes in the removal of micropollutants whilst eliminating health and environmental hazards have attracted great attention in recent years. This current work investigated the biotransformation efficiency of a novel laccase from Xylaria polymorpha (XPL) in comparison with commercial laccases from Trametes versicolor (TVL) and Aspergillus sp. (ASL). XPL exhibited better oxidation performance (95.7%) on AMX than TVL (92.8%) and ASL (90.5%). Optimization of operational conditions revealed that AMX was best oxidized at pH 5, temperature (30 °C), and concentration (1.0 mg L-1). The investigation carried out to determine the effect of redox mediators revealed violuric acid (VLA) as the best redox mediator. The laccase stability experiments elucidated that the oxidation of AMX is time and mediator concentration dependent with ABTS exhibiting highest deactivation of XPL active sites. Two metabolic products; amoxicillin penilloic acid and 5-hydroxy-6-(4-hydroxyphenyl)- 3-(1,3-thiazolidin-2-yl)piperazin-2-one of AMX were obtained through Liquid Chromatography-Mass Spectrometry (LC-MS) analyses. The toxicity assessments carried out after oxidation of AMX by XPL showed 94% and 97% reduced toxicity on Artemia salina and Aliivibrio fischeri respectively. The study further underscored the efficiency of biocatalytic-mediator technology in the transformation of complex micropollutants into less toxic substances in an eco-friendly way.


Assuntos
Lacase , Trametes , Ascomicetos , Biotransformação , Lacase/metabolismo , Oxirredução , Preparações Farmacêuticas , Trametes/metabolismo
3.
Front Cell Infect Microbiol ; 10: 552394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123493

RESUMO

Fusarium wilt is caused by Fusarium oxysporum f. sp. elaeidis, and constitutes a severe threat to the oil palm industry in Africa. This study is aimed at surveying, identifying the secreted effector genes responsible for virulence during pathogenesis, and investigating the level of genetic diversity and cluster resolutions of alleles accountable for virulence in pathogenic strains of F. oxysporum f.sp. elaeidis from African countries. Fifty-eight fungal strains were isolated from acute and chronic Fusarium wilt diseased oil palms in Nigeria, Ghana and Cameroon. Morphological and sequencing analysis of the Internal Transcribed Spacer (ITS) region grouped all strains into nine dominant strains with a majority (41.37%) belonging to F. oxysporum, followed by F. solani (20.68%), F. equiseti (20.68%), F. verticilliodes (5.17%), F. proliferatum (3.44%), F. chlamydosporum (3.44%), F. nelsonii (1.72%), Fomes fomentarius, and Penicillium simplicissimum (1.72%). Disease incidence and severity showed varying levels of virulence with some Fusarium strains causing severe symptoms while others exhibited slight symptoms. ISSR evaluation disclosed a considerable level of genetic diversity among pathogenic F. oxysporum f.sp. elaeidis strains. Molecular characterization using defense gene primers revealed that the oil palm genotypes screened did not amplify defense genes. During pathogenesis, Fusarium strains produced GMC oxidoreductases, hypothetical proteins, FOIG 16629, FOXG 14258, and Pyranose dehydrogenase 3-like proteins using virulent effector gene primers. Polymerase Chain Reaction analysis using specific gene primers revealed that PRK02106, beta and BetA effector genes were secreted explicitly by F. oxysporum f.sp. elaeidis (4) and F. oxysporum f.sp. elaeidis (CRT) strains while screening tolerant oil palm genotypes. During screening susceptible oil palm genotypes, F. oxysporum f.sp. elaeidis (4) and F. oxysporum f.sp. elaeidis (CRT) strains produced FGGY_L-XK1, PRK10939, FGGY_N1, XylB1, XylB2, FGGY_L-XK2, XylB3, FGGY_N2, and XylB4 effector genes. Identifying these effector genes will provide the platform to study the basis of pathogenesis which will help breeders to modify breeding techniques for the improvement of oil palm genotypes in order to reduce oil palm loss in plantations and enhance food security.


Assuntos
Fusarium , Coriolaceae , Fusarium/genética , Genótipo , Nigéria , Penicillium , Doenças das Plantas
4.
Microorganisms ; 7(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480316

RESUMO

Capsicum peppers are among the most popular horticultural crops produced and consumed worldwide. This study aimed to assess the occurrence of spoilage fungi responsible for post-harvest losses in the most common varieties of Capsicum peppers collected from retail markets in Nigeria and Ghana. Forty fungal isolates belonging to 7 families, 8 genera, and 17 species were identified on the basis of morphology, culture characteristics, and DNA sequencing of the internal transcribed spacer (ITS) region. Aspergillus spp. (42.5%), Fusarium spp. (22.5%), and Colletotrichum spp. (15%) were found to be the predominant fungal pathogens. Furthermore, potential ability of the isolated mycotoxigenic fungi to produce some major mycotoxins was analyzed using high-performance liquid chromatography (HPLC). Among the 22 isolates analyzed, 11 strains belonging to the genera of Aspergillus, Fusarium, and Penicillium were found to be able to produce mycotoxins, such as aflatoxin B1, gliotoxin, deoxynivalenol, and citrinin. A better understanding of the role of fungal contaminants in pepper fruits, especially the prevalence of mycotoxigenic fungi and their associated mycotoxigenic potential, will assist in the development of management strategies to control mycotoxin contamination and to reduce toxicological risks related to pepper consumption by humans and animals.

5.
Int J Biol Macromol ; 120(Pt A): 19-27, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30118766

RESUMO

Efficient decolorization of cibracron brilliant red 3B-A dye by novel white rot fungal consortium was studied in static and shaking conditions using solid state fermentation technology. Daldinia concentrica (DC) and Xylaria polymorpha (XP) consortium showed dye removal efficiency than the individual strains within 5 days. The enzymes analysis revealed significant inductions in laccase (84%), lignin peroxidase (78%) and manganese peroxidase (65%) by the fungal co-culture (DC + XP), Xylaria polymorpha (XP) and Daldinia concentrica (DC) respectively. Enhanced decolorization was recorded when the medium was supplemented with glucose and ammonium nitrate as carbon and nitrogen sources respectively. The GCMS and HPLC analysis of metabolites suggest the different fates of biodegradation of cibracron brilliant red 3B-A dye by DC, XP and DC + XP consortium. The isotherm and kinetic studies revealed the goodness of fit of the experimental data when subjected to Freundlich and pseudo-second order models respectively. Phytotoxicity studies revealed that the biodegradation of the cibracron brilliant red 3B-A dye by the DC + XP consortium and individual strains has also led to the detoxification of the pollutant. This study revealed the effectiveness of white rot fungi in the eco-friendly remediation of dye polluted environment.


Assuntos
Biomassa , Consórcios Microbianos , Triazinas/metabolismo , Xylariales/metabolismo , Proteínas Fúngicas/biossíntese , Lacase/biossíntese , Peroxidases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA