Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Genet Med ; 26(5): 101076, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
2.
J Paediatr Child Health ; 60(4-5): 118-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605555

RESUMO

AIM: Recent rapid advances in genomics are revolutionising patient diagnosis and management of genetic conditions. However, this has led to many challenges in service provision, education and upskilling requirements for non-genetics health-care professionals and remuneration for genomic testing. In Australia, Medicare funding with a Paediatric genomic testing item for patients with intellectual disability or syndromic features has attempted to address this latter issue. The Sydney Children's Hospitals Network - Westmead (SCHN-W) Clinical Genetics Department established Paediatric and Neurology genomic multidisciplinary team (MDT) meetings to address the Medicare-specified requirement for discussion with clinical genetics, and increasing genomic testing advice requests. METHODS: This SCHN-W genomic MDT was evaluated with two implementation science frameworks - the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) and GMIR - Genomic Medicine Integrative Research frameworks. Data from June 2020 to July 2022 were synthesised and evaluated, as well as process mapping of the MDT service. RESULTS: A total of 205 patients were discussed in 34 MDT meetings, facilitating 148 genomic tests, of which 73 were Medicare eligible. This was equivalent to 26% of SCHN-W genetics outpatient activity, and 13% of all Medicare-funded paediatric genomic testing in NSW. 39% of patients received a genetic diagnosis. CONCLUSION: The genomic MDT facilitated increased genomic testing at a tertiary paediatric centre and is an effective model for mainstreaming and facilitating precision medicine. However, significant implementation issues were identified including cost and sustainability, as well as the high level of resourcing that will be required to scale up this approach to other areas of medicine.


Assuntos
Testes Genéticos , Genômica , Equipe de Assistência ao Paciente , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Austrália , Criança , New South Wales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA