Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Small ; : e2311073, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566548

RESUMO

Immobilization of quantum dots (QDs) on fiber surfaces has emerged as a robust approach for preserving their functional characteristics while mitigating aggregation and instability issues. Despite the advancement, understanding the impacts of QDs on jet-fiber evolution during electrospinning, QDs-fiber interface, and composites functional behavior remains a knowledge gap. The study adopts a high-speed imaging methodology to capture the immobilization effects on the QDs-fiber matrix. In situ observations reveal irregular triangular branches within the QDs-fiber matrix, exhibiting distinctive rotations within a rapid timeframe of 0.00667 ms. The influence of FeQDs on Taylor cone dynamics and subsequent fiber branching velocities is elucidated. Synthesis phenomena are correlated with QD-fiber's morphology, crystallinity, and functional properties. PAN-FeQDs composite fibers substantially reduced (50-70%) nano-fibrillar length and width while their diameter expanded by 17%. A 30% enhancement in elastic modulus and reduction in adhesion force for PAN-FeQDs fibers is observed. These changes are attributed to chemical and physical intertwining between the FeQDs and the polymer matrix, bolstered by the shifts in the position of C≡N and C═C bonds. This study provides valuable insights into the quantum dot-fiber composites by comprehensively integrating and bridging jet-fiber transformation, fiber structure, nanomechanics, and surface chemistry.

2.
Nanotechnology ; 35(39)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955145

RESUMO

Friction phenomena in two-dimensional (2D) materials are conventionally studied at atomic length scales in a few layers using low-load techniques. However, the advancement of 2D materials for semiconductor and electronic applications requires an understanding of friction and delamination at a few micrometers length scale and hundreds of layers. To bridge this gap, the present study investigates frictional resistance and delamination mechanisms in 2D tungsten diselenide (WSe2) at 10µm length and 100-500 nm depths using an integrated atomic force microscopy (AFM), high-load nanoscratch, andin-situscanning electron microscopic (SEM) observations. AFM revealed a heterogenous distribution of frictional resistance in a single WSe2layer originating from surface ripples, with the mean increasing from 8.7 to 79.1 nN as the imposed force increased from 20 to 80 nN. High-loadin-situnano-scratch tests delineated the role of the individual layers in the mechanism of multi-layer delamination under an SEM. Delamination during scratch consists of stick-slip motion with friction force increasing in each successive slip, manifested as increasing slope of lateral force curves with scratch depth from 10.9 to 13.0 (× 103) Nm-1. Delamination is followed by cyclic fracture of WSe2layers where the puckering effect results in adherence of layers to the nanoscratch probe, increasing the local maximum of lateral force from 89.3 to 205.6µN. This establishment of the interconnectedness between friction in single-layer and delamination at hundreds of layers harbors the potential for utilizing these materials in semiconductor devices with reduced energy losses and enhanced performance.

3.
J Biomech Eng ; 142(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291440

RESUMO

Understanding aortic valve (AV) mechanics is crucial in elucidating both the mechanisms that drive the manifestation of valvular diseases as well as the development of treatment modalities that target these processes. Genetically modified mouse models have become the gold standard in assessing biological mechanistic influences of AV development and disease. However, very little is known about mouse aortic valve leaflet (MAVL) tensile properties due to their microscopic size (∼500 µm long and 45 µm thick) and the lack of proper mechanical testing modalities to assess uniaxial and biaxial tensile properties of the tissue. We developed a method in which the biaxial tensile properties of MAVL tissues can be assessed by adhering the tissues to a silicone rubber membrane utilizing dopamine as an adhesive. Applying equiaxial tensile loads on the tissue-membrane composite and tracking the engineering strains on the surface of the tissue resulted in the characteristic orthotropic response of AV tissues seen in human and porcine tissues. Our data suggest that the circumferential direction is stiffer than the radial direction (n = 6, P = 0.0006) in MAVL tissues. This method can be implemented in future studies involving longitudinal mechanical stimulation of genetically modified MAVL tissues bridging the gap between cellular biological mechanisms and valve mechanics in popular mouse models of valve disease.


Assuntos
Valva Aórtica , Estresse Mecânico , Animais , Suínos
4.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026152

RESUMO

Graphene foam-based hierarchical polyimide composites with nanoengineered interface are fabricated in this study. Damping behavior of graphene foam is probed for the first time. Multiscale mechanisms contribute to highly impressive damping in graphene foam. Rippling, spring-like interlayer van der Waals interactions and flexing of graphene foam branches are believed to be responsible for damping at the intrinsic, interlayer and anatomical scales, respectively. Merely 1.5 wt% graphene foam addition to the polyimide matrix leads to as high as ≈300% improvement in loss tangent. Graphene nanoplatelets are employed to improve polymer-foam interfacial adhesion by arresting polymer shrinkage during imidization and π-π interactions between nanoplatelets and foam walls. As a result, damping behavior is further improved due to effective stress transfer from the polymer matrix to the foam. Thermo-oxidative stability of these nanocomposites is investigated by exposing the specimens to glass transition temperature of the polyimide (≈400 °C). The composites are found to retain their damping characteristics even after being subjected to such extreme temperature, attesting their suitability in high temperature structural applications. Their unique hierarchical nanostructure provides colossal opportunity to engineer and program material properties.

5.
Phys Chem Chem Phys ; 17(14): 8596-603, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25738191

RESUMO

Silver nanoclusters were prepared in a soda-lime glass matrix through the ion-exchange (Ag(+)↔ Na(+)) method followed by thermal annealing in an air atmosphere. The nanoscale patterning of Ag nanoclusters embedded in a soda lime glass matrix in an air atmosphere at different annealing temperatures has been investigated. During annealing, Ag(+) is reduced to Ag(0) and subsequently forms silver nanoparticles inside the glass matrix. A blue shift of 20 nm has been observed as a function of the post annealing temperature. The photoluminescence intensity is highest for an annealing temperature of 500 °C for 1 h and continuously decreases as annealing temperature increases up to 600 °C. The presence of spherical nanoparticles with a maximum particle size of 7.2 nm has been observed after annealing at 600 °C for 1 hour, which is consistent with Mie theory based results.

6.
Nanotechnology ; 25(4): 045707, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24399030

RESUMO

Achieving strong adhesion between graphene and SiO(x)/Si substrates is crucial to make reliable graphene based electronics and electro-optic devices. We report the enhanced adhesion energy by vacuum annealing and the quantification of graphene-SiO(x)/Si substrate adhesion energy by using the nano-scratch technique coupled with Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). We found that the adhesion energy of as-transferred graphene on SiO(x)/Si substrates is ~2.978 J m(-2). By applying different annealing protocols of rapid thermal annealing and vacuum annealing, the adhesion energy of graphene-SiO(x)/Si is increased to 10.09 and 20.64 J m(-2), respectively. The increase in adhesion energy is due to the formation of chemical bonds between the graphene and SiO(x) at high temperatures. The XPS depth profiling confirms that C-O and C=O chemical bond formation occurs at the graphene/SiO(x) interface. These results could be adapted for graphene/Si nanoelectronics device fabrication and they open up a pathway towards producing reliable solid state devices.


Assuntos
Grafite/química , Nanotecnologia/métodos , Adesividade , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia de Varredura por Sonda , Nanoestruturas/química , Óptica e Fotônica , Espectroscopia Fotoeletrônica , Silício/química , Análise Espectral Raman , Propriedades de Superfície , Transistores Eletrônicos
7.
Phys Chem Chem Phys ; 16(43): 23874-83, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25273381

RESUMO

TiO2 is the most studied semiconductor material for photovoltaics and photocatalyst applications, but due to a very large electron hole recombination process it is difficult to use it as a photovoltaics material. In this context graphene-decorated Ag-doped TiO2 nanostructures have been synthesized by a simple, cost effective chemical method. In this paper, we have studied the structural transformations and electronic band structure of Ag-doped TiO2 due to the incorporation of graphene oxide. Pure rutile and anatase-rutile mixed phases of TiO2 nanoparticles were obtained by Ag doping and annealing at 400 °C. A large red shift was observed in most of the graphene-decorated, doped TiO2 hybrid nanostructures, which is because of the electron transfer between the conduction bands of the doped TiO2 and the multilayer graphene. The Ag-doped TiO2 nanoparticles appear in the shape of a bunch of bananas (or rice-like) because of the jumbled collection of particles, which remain unaltered even after graphene decoration. The strong electrical coupling of Ag-doped TiO2 with reduced graphene oxide produces an advanced hybrid material useful for superior photovoltaics, photocatalytic activity and other applications.

8.
J Mech Behav Biomed Mater ; 150: 106283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048712

RESUMO

Graded porosity plays a crucial role in scaffolds for bone tissue engineering as it facilitates vital processes such as nutrient diffusion, cellular infiltration, and tissue integration. This paper explores the utilization of freeze casting (FC) as a technique to generate composite scaffolds comprising hydroxyapatite (HA) reinforced with 1D-boron nitride nanotubes (BNNTs) featuring graded porosity and improved compressive strength. Comparative studies were conducted using FC at room and sub-zero temperatures to assess the influence of temperature gradient and heat transfer rate on the production of gradient and aligned porosity in HA-BNNT composites. The FC process with a prolonged thermal gradient facilitated the creation of aligned pores in the HA-BNNT, exhibiting a wide distribution of 60% porosity ranging from 1 to 30 µm. Adding high strength 1 vol% BNNT reinforcement resulted in a remarkable 50% enhancement in compressive strength compared to the control sample. Osteoblasts seeded on the HA-BNNT substrate exhibited significantly higher alkaline phosphate activity, indicating accelerated mineralization compared to the control sample. Gradient porosity and wide pore distribution in the HA-BNNT scaffolds promoted osteogenic activities. Overall, the demonstrated FC processing technique and BNNT addition hold great potential for developing functional and biomimetic scaffolds that can effectively promote tissue regeneration, leading to improved clinical outcomes in bone tissue engineering applications.


Assuntos
Durapatita , Nanotubos , Materiais Biocompatíveis , Alicerces Teciduais , Porosidade , Força Compressiva , Engenharia Tecidual/métodos
9.
ACS Appl Mater Interfaces ; 16(29): 37596-37612, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991102

RESUMO

Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types: pure silicone and silicone-poly(lactic-co-glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 µm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.


Assuntos
Miocárdio , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Impressão Tridimensional , Engenharia Tecidual , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Miocárdio/metabolismo , Miocárdio/patologia , Alicerces Teciduais/química , Humanos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
10.
Nanoscale ; 16(6): 2983-2992, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38259163

RESUMO

A myocardial infarction (MI), commonly called a heart attack, results in the death of cardiomyocytes (CMs) in the heart. Tissue engineering provides a promising strategy for the treatment of MI, but the maturation of human engineered cardiac tissue (hECT) still requires improvement. Conductive polymers and nanomaterials have been incorporated into the extracellular matrix to enhance the mechanical and electrical coupling between cardiac cells. Here we report a simple approach to incorporate gold nanorods (GNRs) into the fibrin hydrogel to form a GNR-fibrin matrix, which is used as the major component of the extracellular matrix for forming a 3D hECT construct suspended between two flexible posts. The hECTs made with GNR-fibrin hydrogel showed markers of maturation such as higher twitch force, synchronous beating activity, sarcomere maturation and alignment, t-tubule network development, and calcium handling improvement. Most importantly, the GNR-hECTs can survive over 9 months. We envision that the hECT with GNRs holds the potential to restore the functionality of the infarcted heart.


Assuntos
Infarto do Miocárdio , Nanotubos , Humanos , Engenharia Tecidual , Ouro , Miócitos Cardíacos , Matriz Extracelular , Hidrogéis , Infarto do Miocárdio/terapia , Fibrina
11.
ACS Omega ; 8(3): 3184-3189, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713692

RESUMO

This study reports a fundamental electrochemical study to understand the corrosion behavior of 1D bulk, free-standing 1D boron nanotube (BNNT) buckypaper and compare it with a sintered 2D hBN nanoplatelet (BNNP) pellet. Tafel analysis indicates that 1D BNNT has superior corrosion resistance with a lower corrosion rate of 0.0026 mils per year (mpy). 2D BNNP, although having similar chemistry to 1D BNNT, resulted in an increased (40 times) corrosion rate of 0.107 mpy. The higher surface area and aspect ratio of BNNT drastically influenced the corrosion kinetics. The scientific outcomes will enable the better design of novel hBN-based corrosion-resistant materials.

12.
ACS Appl Mater Interfaces ; 15(20): 24197-24208, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37178192

RESUMO

Ashby's map's role in rationally selecting materials for optimal performance is well-established in traditional engineering applications. However, there is a major gap in Ashby's maps in selecting materials for tissue engineering, which are very soft with an elastic modulus of less than 100 kPa. To fill the gap, we create an elastic modulus database to effectively connect soft engineering materials with biological tissues such as the cardiac, kidney, liver, intestine, cartilage, and brain. This soft engineering material mechanical property database is created for widely applied agarose hydrogels based on big-data screening and experiments conducted using ultra-low-concentration (0.01-0.5 wt %) hydrogels. Based on that, an experimental and analysis protocol is established for evaluating the elastic modulus of ultra-soft engineering materials. Overall, we built a mechanical bridge connecting soft matter and tissue engineering by fine-tuning the agarose hydrogel concentration. Meanwhile, a soft matter scale (degree of softness) is established to enable the manufacturing of implantable bio-scaffolds for tissue engineering.


Assuntos
Cartilagem , Engenharia Tecidual , Engenharia Tecidual/métodos , Sefarose , Hidrogéis , Módulo de Elasticidade , Alicerces Teciduais
13.
Nanoscale ; 15(24): 10360-10370, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37291990

RESUMO

Understanding myocytes' spatiotemporal mechanical behavior and viscoelasticity is a long-standing challenge as it plays a critical role in regulating structural and functional homeostasis. To probe the time-dependent viscoelastic behaviors of cardiomyocytes with cross-linked polymer networks, we measure stem cell-derived cardiomyocyte's (hiPSC-CM) deformation, adhesion, and contractility using atomic force microscopy (AFM) nanoindentation, fluidic micropipette, and digital image correlation (DIC). Our results show a cytoplasm load of 7-14 nN, a de-adhesion force of 0.1-1 nN, and an adhesion force between two hiPSC-CMs of 50-100 nN with an interface energy of 0.45 pJ. Based on the load-displacement curve, we model its dynamic viscoelasticity and discover its intimate associations with physiological properties. Cell detaching and contractile modeling demonstrate cell-cell adhesion and beating related strains manifesting viscoelastic behavior, highlighting viscoelasticity plays the primary role in governing hiPSC-CM spatiotemporal mechanics and functions. Overall, this study provides valuable information about the mechanical properties, adhesion behaviors, and viscoelasticity of single hiPSC-CM, shedding light on mechanical-structure relationships and their dynamic responses to mechanical stimuli and spontaneous contraction.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos , Adesão Celular
14.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447547

RESUMO

Shape memory polymer (SMP) epoxy composites have attracted significant attention due to their easy processing, lightweight nature, and ability to recover strain. However, their limited recovery rate and inferior mechanical properties have hindered their functional applications. This research explores the potential of three-dimensional (3D) graphene foam (GrF) as a highly efficient reinforcement for SMP epoxy composites. We demonstrated that the incorporation of a mere 0.13 wt.% GrF into mold-cast SMP epoxy leads to a 19% increase in the glass transition temperature (Tg). To elucidate the reinforcing mechanism, we fabricated and extensively analyzed composites with varying weight percentages of GrF. The GrF-based SMP epoxy composite exhibits a 57% increase in thermal conductivity, measuring 0.296 W mK-1 at 70 °C, due to the interconnected 3D graphene network within the matrix. Notably, this composite also demonstrates remarkable electrical conductivity, making it suitable for dual-triggering applications. The GrF-SMP epoxy composite achieves a maximum shape recovery ratio and a significant 23% improvement in the recovery rate, effectively addressing the issue of slow recovery associated with SMPs. We investigated the effect of switching temperatures on the shape recovery rate. We identified the optimal triggering temperature to initiate shape recovery for epoxy SMP and GrF-epoxy SMP as thermal energy equivalent to Tg + 20 °C. Additionally, we fabricated a bird-shaped composite using GrF reinforcement, which showcases self-healing capabilities through the crack opening and closure and serves as a tangible demonstration of the transformative potential of the composite. These GrF-epoxy SMP composites, responsive to stimuli, hold immense promise for diverse applications, such as mechanical systems, wearable sensors, morphing wings, foldable robots, and antennas.

15.
Nanoscale ; 15(7): 3438-3448, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722923

RESUMO

Recently, progress in electrochromic (EC) devices has been made in optimizing electrode and device configurations and performance. However, the ion insertion/de-insertion induced charge transfer (CT) nanomechanical effect has remained unexplored, i.e., repetitive electrode size changes at the nanoscale and stress/strain generated during electrochemical cycling, which is the focus of this work due to its intimate correlation with the elastic and plastic deformation at the interface. Considering the intervalence electrons, excellent electrochemical kinetics, and dramatic color changes, tungsten oxide (WO3) and nickel oxide (NiO) films are configured as the EC cathode and anode materials, respectively, within a full device. Upon extended cycles (>10 000), the void generation and delamination that occurred at the interface account for performance decay. Encouraged by the findings, nanoindentation mechanical tests and electrical kelvin probe force microscopy were employed to investigate the CT induced effects at the interface. There is a dramatic increase of up to 45% in the elastic Young's modulus in colored/charged WO3 at ∼40 mC cm-2. The correlation between CT and synergistic mechanical effect is interpreted by the Lippman equation. Interestingly, despite the charged state (colored; lithiated) with a relatively flat morphology bringing an ∼3.4 times higher electrostatic surface potential, the electrical work function unexpectedly decreases, arising from the dominant effect of the dipole layer potential over the chemical potential. The interatomic cohesive energy and equilibrium distance increase bury the seeds for mechanical deformation in the long run. This work provides fundamental insights into electro-chemo mechanics and interdisciplinary concerted interfacial effects at the nano/atomic level. The dependence of surface potential, stress, work function, and cohesive energy on electrochemical kinetics has been interpreted.

16.
ACS Appl Bio Mater ; 6(2): 908-918, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36753748

RESUMO

This study investigates the nanoindentation technique to elucidate the quasi-static and dynamic stress response at the wounded and sutured tissue interface. In vitro modeling and wound healing analysis enable an understanding of sutured tissue interface integrity, modulus, and stability using an artificial abdominal wall model. Sutured tissues with simple interrupted suturing (SIS) demonstrated a 35-40% higher modulus than simple continuous suturing (SCS). High-density suturing with a suture space of 2.5 mm exhibited a 2-fold higher modulus than low-density suturing with a suture space of 5 mm. The elastic modulus of the sutured pad immersed in deionized water was ∼70-95% of the dry condition. The dynamic stress data indicate that long-term body motions-triggered stress instability at the wound interface was affected by suturing style and density. The pivotal factors determining wound healing are quasi-static and dynamic modulus at the sutured interface, which is intimately associated with patient pain, wound complications, healing speed, and blood flow. The proposed method and data are an original approach to addressing wound healing, contributing to patient well-being and identifying, interpreting, and breaking the drawn-out debates in the suturing field.


Assuntos
Técnicas de Sutura , Cicatrização , Humanos , Suturas
17.
Front Bioeng Biotechnol ; 11: 1177688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251575

RESUMO

Introduction: Three dimensional engineered cardiac tissues (3D ECTs) have become indispensable as in vitro models to assess drug cardiotoxicity, a leading cause of failure in pharmaceutical development. A current bottleneck is the relatively low throughput of assays that measure spontaneous contractile forces exerted by millimeter-scale ECTs typically recorded through precise optical measurement of deflection of the polymer scaffolds that support them. The required resolution and speed limit the field of view to at most a few ECTs at a time using conventional imaging. Methods: To balance the inherent tradeoff among imaging resolution, field of view and speed, an innovative mosaic imaging system was designed, built, and validated to sense contractile force of 3D ECTs seeded on a 96-well plate. Results: The system performance was validated through real-time, parallel contractile force monitoring for up to 3 weeks. Pilot drug testing was conducted using isoproterenol. Discussion: The described tool increases contractile force sensing throughput to 96 samples per measurement; significantly reduces cost, time and labor needed for preclinical cardiotoxicity assay using 3D ECT. More broadly, our mosaicking approach is a general way to scale up image-based screening in multi-well formats.

18.
ACS Biomater Sci Eng ; 9(3): 1644-1655, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36765460

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show immature features, but these are improved by integration into 3D cardiac constructs. In addition, it has been demonstrated that physical manipulations such as electrical stimulation (ES) are highly effective in improving the maturation of human-engineered cardiac tissue (hECT) derived from hiPSC-CMs. Here, we continuously applied an ES in capacitive coupling configuration, which is below the pacing threshold, to millimeter-sized hECTs for 1-2 weeks. Meanwhile, the structural and functional developments of the hECTs were monitored and measured using an array of assays. Of particular note, a nanoscale imaging technique, scanning ion conductance microscopy (SICM), has been used to directly image membrane remodeling of CMs at different locations on the tissue surface. Periodic crest/valley patterns with a distance close to the sarcomere length appeared on the membrane of CMs near the edge of the tissue after ES, suggesting the enhanced transverse tubulation network. The SICM observation is also supported by the fluorescence images of the transverse tubulation network and α-actinin. Correspondingly, essential cardiac functions such as calcium handling and contraction force generation were improved. Our study provides evidence that chronic subthreshold ES can still improve the structural and functional developments of hECTs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/fisiologia , Cálcio/farmacologia , Estimulação Elétrica
19.
IEEE Trans Biomed Eng ; 70(7): 2237-2245, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021994

RESUMO

Three-dimensional engineered heart tissues (EHTs) derived from human induced pluripotent stem cells (iPSCs) have become an important resource for both drug toxicity screening and research on heart disease. A key metric of EHT phenotype is the contractile (twitch) force with which the tissue spontaneously beats. It is well-known that cardiac muscle contractility - its ability to do mechanical work - depends on tissue prestrain (preload) and external resistance (afterload). OBJECTIVES: Here, we demonstrate a technique to control afterload while monitoring contractile force exerted by EHTs. METHODS: We developed an apparatus that can regulate EHT boundary conditions using real-time feedback control. The system is comprised of a pair of piezoelectric actuators that can strain the scaffold and a microscope that can measure EHT force and length. Closed loop control allows dynamic regulation of effective EHT boundary stiffness. RESULTS: When controlled to switch instantaneously from auxotonic to isometric boundary conditions, EHT twitch force immediately doubled. Changes in EHT twitch force as a function of effective boundary stiffness were characterized and compared to twitch force in auxotonic conditions. CONCLUSION: EHT contractility can be regulated dynamically through feedback control of effective boundary stiffness. SIGNIFICANCE: The capacity to alter the mechanical boundary conditions of an engineered tissue dynamically offers a new way to probe tissue mechanics. This could be used to mimic afterload changes that occur naturally in disease, or to improve mechanical techniques for EHT maturation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miocárdio , Contração Miocárdica/fisiologia , Engenharia Tecidual/métodos
20.
J Contemp Dent Pract ; 13(1): 11-5, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22430687

RESUMO

AIM: The aim of periodontal surgery is complete regeneration. The present study was designed to evaluate and compare clinically soft tissue changes in form of probing pocket depth, gingival shrinkage, attachment level and hard tissue changes in form of horizontal and vertical bone level using resorbable membranes. MATERIALS AND METHODS: Twelve subjects with bilateral class 2 furcation defects were selected. After initial phase one treatment, open debridement was performed in control site while freezedried dura mater allograft was used in experimental site. Soft and hard tissue parameters were registered intrasurgically. Nine months reentry ensured better understanding and evaluation of the final outcome of the study. RESULTS: Guided tissue regeneration is a predictable treatment modality for class 2 furcation defect. There was statistically significant reduction in pocket depth as compared to control (p < 0.01). There is statistically significant increase in periodontal attachment level within control and experimental sites showed better results (p < 0.01). For hard tissue parameter, significant defect fill resulted in experimental group, while in control group, less significant defect fill was found in horizontal direction and nonsignificant defect fill was found in vertical direction. CONCLUSION: The results showed statistically significant improvement in soft and hard tissue parameters and less gingival shrinkage in experimental sites compared to control site. CLINICAL SIGNIFICANCE: The use of FDDMA in furcation defects helps us to achieve predictable results. This cross-linked collagen membrane has better handling properties and ease of procurement as well as economic viability making it a logical material to be used in regenerative surgeries.


Assuntos
Implantes Absorvíveis , Colágeno , Dura-Máter , Defeitos da Furca/cirurgia , Regeneração Tecidual Guiada Periodontal/métodos , Doenças Mandibulares/cirurgia , Membranas Artificiais , Adulto , Processo Alveolar/patologia , Regeneração Óssea/fisiologia , Desbridamento , Feminino , Liofilização , Defeitos da Furca/classificação , Retração Gengival/classificação , Retração Gengival/cirurgia , Regeneração Tecidual Guiada Periodontal/instrumentação , Humanos , Masculino , Doenças Mandibulares/classificação , Doenças Mandibulares/patologia , Pessoa de Meia-Idade , Perda da Inserção Periodontal/classificação , Perda da Inserção Periodontal/cirurgia , Bolsa Periodontal/classificação , Bolsa Periodontal/cirurgia , Retalhos Cirúrgicos , Transplante Homólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA