Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Psychiatry ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378927

RESUMO

Prenatal and perinatal complications represent well-known risk factors for the future development of psychiatric disorders. Such influence might become manifested during childhood and adolescence, as key periods for brain and behavioral changes. Internalizing and externalizing behaviors in adolescence have been associated with the risk of psychiatric onset later in life. Both brain morphology and behavior seem to be affected by obstetric complications, but a clear link among these three aspects is missing. Here, we aimed at analyzing the association between prenatal and perinatal complications, behavioral issues, and brain volumes in a group of children and adolescents. Eighty-two children and adolescents with emotional-behavioral problems underwent clinical and 3 T brain magnetic resonance imaging (MRI) assessments. The former included information on behavior, through the Child Behavior Checklist/6-18 (CBCL/6-18), and on the occurrence of obstetric complications. The relationships between clinical and gray matter volume (GMV) measures were investigated through multiple generalized linear models and mediation models. We found a mutual link between prenatal complications, GMV alterations in the frontal gyrus, and withdrawn problems. Specifically, complications during pregnancy were associated with higher CBCL/6-18 withdrawn scores and GMV reductions in the right superior frontal gyrus and anterior cingulate cortex. Finally, a mediation effect of these GMV measures on the association between prenatal complications and the withdrawn dimension was identified. Our findings suggest a key role of obstetric complications in affecting brain structure and behavior. For the first time, a mediator role of frontal GMV in the relationship between prenatal complications and internalizing symptoms was suggested. Once replicated on independent cohorts, this evidence will have relevant implications for planning preventive interventions.

2.
Neuroimage ; 292: 120603, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588833

RESUMO

Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.


Assuntos
Atlas como Assunto , Encéfalo , Imageamento por Ressonância Magnética , Neuroimagem , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Conjuntos de Dados como Assunto , Desenvolvimento Fetal/fisiologia , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
3.
NMR Biomed ; : e5175, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757789

RESUMO

Magnetic resonance imaging (MRI) and cognitive profiles in patients with mild traumatic brain injury (mTBI) are often discordant. Conventional MRI seldom captures the full extent of pathological changes in the normal-appearing white matter (NAWM). The divided subtracted inversion recovery (dSIR) technique may enhance T1 differences in NAWM, making them easily visible. We aimed to implement dSIR on a clinical scanner and tested results in mTBI patients. To produce dSIR images, Inversion Recovery-Turbo Spin Echo sequences were modified using six different inversion times (TI) on a 3-T scanner in healthy participants and patients with mTBI. The multiple TIs determined normal white (TIshort) and gray matter (TIlong) nulling points in healthy subjects, which were used to create dSIR images. In one patient, the protocol was repeated at 3 months to identify changes after rehabilitation. Diffusion tensor imaging (DTI)-derived mean diffusivity (MD) and fractional anisotropy (FA) maps were aligned to dSIR images to ensure that signal was not artefactual. Ten healthy participants (five females; age 24 ± 3 [95% CI: 21, 26] years) were included. TIshort and TIlong were set at 450 and 750 ms, respectively. In both patients (one male, age 17 years; one female, age 14 years), dSIR images revealed areas with increased T1 in the NAWM not visible on conventional MRI. dSIR-based hyperintensities corresponded to elevated MD and reduced FA. Substantial changes were found at follow-up with improvement in DTI-based parameters. dSIR images enhance subtle changes in the NAWM of patients with mTBI by amplifying their intrinsic T1 signal.

4.
NMR Biomed ; : e5141, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520215

RESUMO

Complementary aspects of tissue microstructure can be studied with diffusion-weighted imaging (DWI). However, there is no consensus on how to design a diffusion acquisition protocol for multiple models within a clinically feasible time. The purpose of this study is to provide a flexible framework that is able to optimize the shell acquisition protocol given a set of DWI models. Eleven healthy subjects underwent an extensive DWI acquisition protocol, including 15 candidate shells, ranging from 10 to 3500 s/mm2. The proposed framework aims to determine the optimized acquisition scheme (OAS) with a data-driven procedure minimizing the squared error of model-estimated parameters. We tested the proposed method over five heterogeneous DWI models exploiting both low and high b-values (i.e., diffusion tensor imaging [DTI], free water, intra-voxel incoherent motion [IVIM], diffusion kurtosis imaging [DKI], and neurite orientation dispersion and density imaging [NODDI]). A voxel-level and region of interest (ROI)-level analysis was conducted over the white matter and in 48 fiber bundles, respectively. Results showed that acquiring data for the five abovementioned models via OAS requires 14 min, compared with 35 min for the joint recommended acquisition protocol. The parameters derived from the reference acquisition scheme and the OAS are comparable in terms of estimated values, noise, and tissue contrast. Furthermore, the power analysis showed that the OAS retains the potential sensitivity to group-level differences in the parameters of interest, with the exception of the free water model. Overall, there is a linear correspondence (R2 = 0.91) between OAS and reference-derived parameters. In conclusion, the proposed framework optimizes the shell acquisition scheme for a given set of DWI models (i.e., DTI, free water, IVIM, DKI, and NODDI), combining low and high b-values while saving acquisition time.

5.
J Magn Reson Imaging ; 59(2): 431-449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37141288

RESUMO

Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Humanos , Cidade de Roma , Encéfalo/patologia , Líquido Extracelular , Meninges
6.
Alzheimers Dement ; 20(2): 1421-1435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897797

RESUMO

This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid ß (Aß) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Transtornos Cerebrovasculares , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Líquido Extracelular , Angiopatia Amiloide Cerebral/terapia , Angiopatia Amiloide Cerebral/patologia , Encéfalo/metabolismo , Transtornos Cerebrovasculares/complicações
7.
Eur J Neurol ; 28(8): 2497-2502, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33817913

RESUMO

BACKGROUND AND PURPOSE: Root and cord irritation from cervical spinal degenerative disease (SDD) may share clinical features with progressive multiple sclerosis (MS), so diagnostic overshadowing may occur. We hypothesized that cervical stenotic SDD is commoner in people with progressive MS, compared to controls. METHODS: A retrospective case-control study of 111 cases (56 with progressive MS and 55 age- and sex-matched controls) was conducted. Five types of cervical SDD (disc degeneration, posterior disc protrusion, endplate changes, canal stenosis and foraminal stenosis) were assessed objectively on magnetic resonance imaging using published scales. Multivariable regression analysis was performed. RESULTS: Moderate-to-severe cervical spinal degeneration occurred more frequently in progressive MS, compared to controls. In multivariable regression, foraminal stenosis was three times more likely in progressive MS (odds ratio 3.20, 95% confidence interval 1.27, 8.09; p = 0.014), and was more severe (p = 0.009). This finding was confirmed on retrospective evaluation of clinical radiology reports in the same population. Foraminal stenosis was twice as likely in progressive MS, compared to relapsing-remitting MS. CONCLUSIONS: People with progressive MS are susceptible to foraminal stenosis. A higher index of suspicion for cervical SDD is required when appropriate neurological symptoms occur in the setting of progressive MS, to guide appropriate treatment or monitoring.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Estudos de Casos e Controles , Vértebras Cervicais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
8.
J Neuroophthalmol ; 41(1): e7-e15, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33136684

RESUMO

BACKGROUND: The trochlear nerve (the fourth cranial nerve) is the only cranial nerve that arises from the dorsal aspect of the midbrain. The nerve has a lengthy course making it highly susceptible to injury. It is also the smallest cranial nerve and is often difficult to identify on neuroimaging. EVIDENCE ACQUISITION: High-resolution 3-dimensional skull base MRI allows for submillimeter isotropic acquisition and is optimal for cranial nerve evaluation. In this text, the detailed anatomy of the fourth cranial nerve applicable to imaging will be reviewed. RESULTS: Detailed anatomic knowledge of each segment of the trochlear nerve is necessary in patients with trochlear nerve palsy. A systematic approach to identification and assessment of each trochlear nerve segment is essential. Pathologic cases are provided for each segment. CONCLUSIONS: A segmental approach to high-resolution 3-dimensional MRI for the study of the trochlear nerve is suggested.


Assuntos
Imageamento por Ressonância Magnética , Músculos Oculomotores/inervação , Doenças do Nervo Troclear/diagnóstico por imagem , Nervo Troclear , Humanos , Imageamento Tridimensional , Neuroimagem , Base do Crânio/diagnóstico por imagem , Nervo Troclear/anatomia & histologia , Nervo Troclear/diagnóstico por imagem , Nervo Troclear/patologia , Doenças do Nervo Troclear/patologia
11.
Pediatr Int ; 57(5): 1003-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286462

RESUMO

Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia characterized by hypoplastic clavicles, late closure of the fontanels, dental problems and other skeletal features. CCD is caused by mutations, deletions or duplications in runt-related transcription factor 2 (RUNX2), which encodes for a protein essential for osteoblast differentiation and chondrocyte maturation. We describe three familial cases of CCD, misdiagnosed as rickets over three generations. No mutations were detected on standard DNA sequencing of RUNX2, but a novel deletion was identified on quantitative polymerase chain reaction (qPCR) and multiple ligation-dependent probe amplification (MLPA). The present cases indicate that CCD could be misdiagnosed as rickets, leading to inappropriate treatment, and confirm that mutations in RUNX2 are not able to be identified on standard DNA sequencing in all CCD patients, but can be identified on qPCR and MLPA.


Assuntos
Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Erros de Diagnóstico , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Raquitismo/diagnóstico , Adulto , Idoso de 80 Anos ou mais , Pré-Escolar , Displasia Cleidocraniana/diagnóstico , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo
12.
J Neuromuscul Dis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578898

RESUMO

Background: Duchenne Muscular Dystrophy (DMD) is a genetic disease in which lack of the dystrophin protein causes progressive muscular weakness, cardiomyopathy and respiratory insufficiency. DMD is often associated with other cognitive and behavioral impairments, however the correlation of abnormal dystrophin expression in the central nervous system with brain structure and functioning remains still unclear. Objective: To investigate brain involvement in patients with DMD through a multimodal and multivariate approach accounting for potential comorbidities. Methods: We acquired T1-weighted and Diffusion Tensor Imaging data from 18 patients with DMD and 18 age- and sex-matched controls with similar cognitive and behavioral profiles. Cortical thickness, structure volume, fractional anisotropy and mean diffusivity measures were used in a multivariate analysis performed using a Support Vector Machine classifier accounting for potential comorbidities in patients and controls. Results: the classification experiment significantly discriminates between the two populations (97.2% accuracy) and the forward model weights showed that DMD mostly affects the microstructural integrity of long fiber bundles, in particular in the cerebellar peduncles (bilaterally), in the posterior thalamic radiation (bilaterally), in the fornix and in the medial lemniscus (bilaterally). We also reported a reduced cortical thickness, mainly in the motor cortex, cingulate cortex, hippocampal area and insula. Conclusions: Our study identified a small pattern of alterations in the CNS likely associated with the DMD diagnosis.

13.
Neuroimage ; 72: 10-9, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23357071

RESUMO

In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm). Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065±0.010Hz vs 0.045±0.019Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV→BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062±0.017Hz vs 0.060±0.024Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals. Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/fisiologia , Ponte Cardiopulmonar , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea , Eletroencefalografia , Humanos , Artéria Cerebral Média/fisiologia , Estudos Retrospectivos , Ultrassonografia Doppler Transcraniana
14.
Sci Rep ; 13(1): 3921, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894644

RESUMO

The brain's intrinsic organization into large-scale functional networks, the resting state networks (RSN), shows complex inter-individual variability, consolidated during development. Nevertheless, the role of gene and environment on developmental brain functional connectivity (FC) remains largely unknown. Twin design represents an optimal platform to shed light on these effects acting on RSN characteristics. In this study, we applied statistical twin methods to resting-state functional magnetic resonance imaging (rs-fMRI) scans from 50 young twin pairs (aged 10-30 years) to preliminarily explore developmental determinants of brain FC. Multi-scale FC features were extracted and tested for applicability of classical ACE and ADE twin designs. Epistatic genetic effects were also assessed. In our sample, genetic and environmental effects on the brain functional connections largely varied between brain regions and FC features, showing good consistency at multiple spatial scales. Although we found selective contributions of common environment on temporo-occipital connections and of genetics on frontotemporal connections, the unique environment showed a predominant effect on FC link- and node-level features. Despite the lack of accurate genetic modeling, our preliminary results showed complex relationships between genes, environment, and functional brain connections during development. A predominant role of the unique environment on multi-scale RSN characteristics was suggested, which needs replications on independent samples. Future investigations should especially focus on nonadditive genetic effects, which remain largely unexplored.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Gêmeos/genética , Descanso , Rede Nervosa
16.
Int J Numer Method Biomed Eng ; 38(1): e3532, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569188

RESUMO

This paper presents a mathematical model of the global, arterio-venous circulation in the entire human body, coupled to a refined description of the cerebrospinal fluid (CSF) dynamics in the craniospinal cavity. The present model represents a substantially revised version of the original Müller-Toro mathematical model. It includes one-dimensional (1D), non-linear systems of partial differential equations for 323 major blood vessels and 85 zero-dimensional, differential-algebraic systems for the remaining components. Highlights include the myogenic mechanism of cerebral blood regulation; refined vasculature for the inner ear, the brainstem and the cerebellum; and viscoelastic, rather than purely elastic, models for all blood vessels, arterial and venous. The derived 1D parabolic systems of partial differential equations for all major vessels are approximated by hyperbolic systems with stiff source terms following a relaxation approach. A major novelty of this paper is the coupling of the circulation, as described, to a refined description of the CSF dynamics in the craniospinal cavity, following Linninger et al. The numerical solution methodology employed to approximate the hyperbolic non-linear systems of partial differential equations with stiff source terms is based on the Arbitrary DERivative Riemann problem finite volume framework, supplemented with a well-balanced formulation, and a local time stepping procedure. The full model is validated through comparison of computational results against published data and bespoke MRI measurements. Then we present two medical applications: (i) transverse sinus stenoses and their relation to Idiopathic Intracranial Hypertension; and (ii) extra-cranial venous strictures and their impact in the inner ear circulation, and its implications for Ménière's disease.


Assuntos
Imageamento por Ressonância Magnética , Modelos Teóricos , Artérias , Circulação Cerebrovascular , Humanos , Veias
17.
J Magn Reson Imaging ; 34(6): 1251-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22102558

RESUMO

The purpose of this study is to review the MR spectroscopic literature regarding schizophrenia. However, as there are over 250 primary MRS articles and dozens of MRS review articles on the subject already, this study will take a different approach. First, the clinical features of schizophrenia will be described. The background neuroanatomy and biochemistry relevant to schizophrenia will be reviewed, as many readers of this journal are unlikely to be familiar with these fields. A current model of the abnormal neural circuitry in schizophrenia will be presented, and predictions extrapolated about relevant metabolite changes over time. Finally, the existing MRS literature will be reviewed in the context of our existing anatomical and chemical knowledge, and future MRS research directions will be elaborated.


Assuntos
Espectroscopia de Ressonância Magnética , Esquizofrenia/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Glutamatos/análise , Neurotransmissores/análise , Ácido gama-Aminobutírico/metabolismo
18.
Diagnostics (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35054192

RESUMO

Proton beam therapy (PBT) is an effective pediatric brain tumor treatment. However, the resulting microstructural changes within and around irradiated tumors are unknown. We retrospectively applied diffusion tensor imaging (DTI) and free-water imaging (FWI) on diffusion-weighted magnetic resonance imaging (dMRI) data to monitor microstructural changes during the PBT and after 8 months in a pilocytic astrocytoma (PA) and normal-appearing white matter (NAWM). We evaluated the conventional MRI- and dMRI-derived indices from six MRI sessions (t0-t5) in a Caucasian child with a hypothalamic PA: at baseline (t0), during the PBT (t1-t4) and after 8 months (t5). The tumor voxels were classified as "solid" or "fluid" based on the FWI. While the tumor volume remained stable during the PBT, the dMRI analyses identified two different response patterns: (i) an increase in fluid content and diffusivity with anisotropy reductions in the solid voxels at t1, followed by (ii) smaller variations in fluid content but higher anisotropy in the solid voxels at t2-t4. At follow-up (t5), the tumor volume, fluid content, and diffusivity in the solid voxels increased. The NAWM showed dose-dependent microstructural changes. The use of the dMRI and FWI showed complex dynamic microstructural changes in the irradiated mass during the PBT and at follow-up, opening new avenues in our understanding of radiation-induced pathophysiologic mechanisms in tumors and the surrounding tissues.

19.
JVS Vasc Sci ; 2: 149-158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34617065

RESUMO

Identification of carotid artery atherosclerosis is conventionally based on measurements of luminal stenosis. However, histopathologic studies demonstrate considerable differences between plaques with identical degrees of stenosis and indicate that certain plaque features are associated with increased risk for ischemic events. As a result of the rapid technological evolution in medical imaging, several important steps have been taken in the field of carotid plaque imaging allowing us to visualize the carotid atherosclerotic plaque and its composition in great detail. For computed tomography, magnetic resonance imaging, positron emission tomography, and ultrasound scan, evidence has accumulated on novel imaging-based markers that confer information on carotid plaque vulnerability, such as intraplaque hemorrhage and lipid-rich necrotic cores. In terms of the imaging-based identification of individuals at high risk of stroke, routine assessments of such imaging markers are the way forward for improving current clinical practice. The current review highlights the main characteristics of the vulnerable plaque indicating their role in the etiology of ischemic stroke as identified by intensive plaque imaging.

20.
Radiology ; 255(1): 23-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20308442

RESUMO

The lack of quantitative objective measures of psychiatric diseases such as anxiety and depression is one reason that the causative factors of psychiatric diseases remain obscure. The fact that human behavior is complex and cannot be easily tested in laboratories or reproduced in animal models further complicates our understanding of psychiatric diseases. During the past 3 decades, several magnetic resonance (MR)-based tools such as MR morphometry, diffusion-tensor imaging, functional MR imaging, and MR spectroscopy have yielded findings that provide tangible evidence of the neurobiologic manifestations of psychiatric diseases. In this article, we summarize major MR findings of schizophrenia, bipolar disorder, anxiety disorders, and attention deficit-hyperactivity disorder as examples to illustrate the promise that MR techniques hold for not only revealing the neurobiological underpinnings of psychiatric disorders but also enhancing our understanding of healthy human behavior. However, many radiologists remain skeptical about the diagnostic value of MR in psychiatric disease. Many inconsistent, noncomparable reports in the literature contribute to this skepticism. The aims of this article are to (a) illustrate the most reported MR findings of major psychiatric disorders such as schizophrenia, mood disorders, anxiety disorders, and attention deficit-hyperactivity disorder; (b) inform radiologists of the potential roles of MR imaging in psychiatric imaging research; and (c) discuss several confounding factors in the design and interpretation of MR imaging findings in psychiatry.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Transtornos Mentais/diagnóstico , Transtornos de Ansiedade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Humanos , Imageamento Tridimensional , Transtornos do Humor/diagnóstico , Esquizofrenia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA