Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108721

RESUMO

The scope of this Special Issue is to highlight and expand our knowledge on the molecular mechanisms of prebiotics and probiotics, as well as to offer a broad overview of current advancements and future directions in this research field [...].


Assuntos
Prebióticos , Probióticos
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901949

RESUMO

Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.


Assuntos
Doenças Metabólicas , Microbiota , Humanos , Diglicerídeos , Fezes/microbiologia , Metabolômica/métodos , Metaboloma/fisiologia , RNA Ribossômico 16S
4.
J Basic Microbiol ; 62(10): 1202-1215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945171

RESUMO

The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.


Assuntos
Actinobacteria , Celulases , Actinomyces/genética , Ágar , Argélia , Amilases , Antibacterianos/farmacologia , Asparaginase/genética , Celulases/genética , Ecossistema , Esterases/genética , Glutaminase/genética , Peptídeo Hidrolases/genética , Filogenia , Poligalacturonase , RNA Ribossômico 16S/genética , Sais , Solo , Áreas Alagadas
5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361709

RESUMO

Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Animais , Humanos , Disbiose/terapia , Xenobióticos , Probióticos/uso terapêutico
6.
Environ Res ; 201: 111548, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166657

RESUMO

Parabens are alkyl esters of p-hydroxybenzoic acid which are extensively used in cosmetics, pharmaceuticals and foodstuffs due to their antimicrobial properties. The most commonly used parabens are methyl-(MeP), ethyl-(EtP), propyl-(PrP) and butyl-(BuP) paraben. Most human exposure to parabens is achieved through the consumption of food or pharmaceutical products and the use of personal care products. However, studies on dietary parabens exposure and the associated factors are very scarce. The main aim of the present study was to explore factors associated with dietary exposure to parabens in Spanish adolescents according to gender. Dietary data and anthropometric measures were collected from 585 adolescents (53.4% boys) aged 12-16 years. Parabens exposure through diet was assessed using a food frequency questionnaire with food products providing more than 95% of energy and macronutrient intake being included in analysis. Stepwise regression was used to identify the foods that most contributed to parabens intake. Logistic regression was used to evaluate factors predicting higher dietary exposure to parabens. The main contributors to dietary MeP, EtP, PrP and BuP exposure in adolescent boys were eggs (41.9%), canned tuna (46.4%), bakery and baked goods products (57.3%) and pineapple (61.1%). In adolescent girls, the main contributors were apples and pears (35.3%), canned tuna (42.1%), bakery and baked goods products (55.1%) and olives (62.1%). Overweight/obese girls were more likely to belong to the highest tertile of overall parabens intake (odds ratio [OR]: 3.32; 95% confidence interval [95% CI]: 1.21-9.15) and MeP (OR: 3.05; 95% CI: 1.14-8.12) than those with a body mass index lower than 25 kg/m2. These findings suggest a positive association between dietary exposure to parabens and overweight/obesity in adolescent girls.


Assuntos
Exposição Dietética , Parabenos , Adolescente , Índice de Massa Corporal , Ésteres , Humanos , Parabenos/efeitos adversos
7.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066922

RESUMO

Human gut microbiota harbors numerous microbial species with molecular enzymatic potential that impact on the eubiosis/dysbiosis and health/disease balances. Microbiota species isolation and description of their specific molecular features remain largely unexplored. In the present study, we focused on the cultivation and selection of species able to tolerate or biodegrade the endocrine disruptor bisphenol A (BPA), a xenobiotic extensively found in food plastic containers. Chemical xenobiotic addition methods for the directed isolation, culturing, Whole Genome Sequencing (WGS), phylogenomic identification, and specific gene-encoding searches have been applied to isolate microorganisms, assess their BPA metabolization potential, and describe encoded catabolic pathways. BPA-tolerant strains were isolated from 30% of infant fecal microbial culture libraries analyzed. Most isolated strains were phylogenetically related to the operational taxonomic group Bacillus amyloliquefaciens spp. Importantly, WGS analysis of microbial representative strain, Bacillus sp. AM1 identified the four complete molecular pathways involved on BPA degradation indicating its versatility and high potential to degrade BPA. Pathways for Exopolysaccharide (EPS) and Polyhydroxyalkanates (PHA) biopolymer synthesis were also identified and phenotypically confirmed by transmission electronic microscopy (TEM). These microbial biopolymers could generally contribute to capture and/or deposit xenobiotics.


Assuntos
Bacillus/metabolismo , Compostos Benzidrílicos/metabolismo , Microbioma Gastrointestinal , Fenóis/metabolismo , Transdução de Sinais , Antibacterianos/farmacologia , Bacillus/citologia , Bacillus/genética , Bacillus/ultraestrutura , Compostos Benzidrílicos/química , Biodegradação Ambiental , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Fenóis/química , Filogenia , RNA Ribossômico 16S/genética
8.
World J Microbiol Biotechnol ; 35(9): 132, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31432260

RESUMO

This paper aims to characterize halophilic bacteria inhabiting Algerian Saline Ecosystems (Sebkha and Chott) located in arid and semi-arid ecoclimate zones (Northeastern Algeria). In addition, screening of enzymatic activities, heavy metal tolerance and antagonistic potential against phytopathogenic fungi were tested. A total of 74 bacterial isolates were screened and phylogenetically characterized using 16S rRNA gene sequencing. The results showed a heterogeneous group of microorganisms falling within two major phyla, 52 strains belonging to Firmicutes (70.2%) and 22 strains (30.8%) of γ-Proteobacteria. In terms of main genera present, the isolates were belonging to Bacillus, Halobacillus, Lentibacillus, Oceanobacillus, Paraliobacillus, Planomicrobium, Salicola, Terribacillus, Thalassobacillus, Salibacterium, Salinicoccus, Virgibacillus, Halomonas, Halovibrio, and Idiomarina. Most of the enzymes producers were related to Bacillus, Halobacillus, and Virgibacillus genera and mainly active at 10% of growing salt concentrations. Furthermore, amylase, esterase, gelatinase, and nuclease activities ranked in the first place within the common hydrolytic enzymes. Overall, the isolates showed high minimal inhibitory concentration values (MIC) for Ni2+ and Cu2+ (0.625 to 5 mM) compared to Cd2+ (0.1 to 2 mM) and Zn2+ (0.156 to 2 mM). Moreover, ten isolated strains belonging to Bacillus, Virgibacillus and Halomonas genera, displayed high activity against the pathogenic fungi (Botrytis cinerea, Fusarium oxyporum, F. verticillioides and Phytophthora capsici). This study on halophilic bacteria of unexplored saline niches provides potential sources of biocatalysts and novel bioactive metabolites as well as promising candidates of biocontrol agents and eco-friendly tools for heavy metal bioremediation.


Assuntos
Antibiose , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biota , Microbiologia Ambiental , Salinidade , Argélia , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/crescimento & desenvolvimento , Hidrolases/análise , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Int J Syst Evol Microbiol ; 65(11): 3847-3852, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875921

RESUMO

An extremely halophilic archaeon, strain S2FP14T, was isolated from a brine sample from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Colonies were red-pigmented and the cells were Gram-staining-negative, motile and pleomorphic. S2FP14T was able to grow in media containing 12.5-30 % (w/v) total salts (optimum 20 %) at pH 7-8.5 (optimum 7.5) and at 25-50 °C (optimum 37 °C). The 16S rRNA gene sequence analysis indicated that this strain represented a member of the genus Halobellus. S2FP14T showed a similarity of 99.5 % to Halobellus inordinatus YC20T, 96.1 % to Halobellus litoreus GX31T, 95.9 % to Halobellus limi TBN53T, 95.5 % to Halobellus rarus YC21T, 95.2 % to Halobellus rufus CBA1103T, 94.6 % to Halobellus salinus CSW2.24.4T and 94.6 % to Halobellus clavatus TNN18T. The rpoB' gene sequence similarity of strain S2FP14T was 97.4 % to 87.6 % with members of genus Halobellus. The major phospholipids of strain S2FP14T were phosphatidylglycerol phosphate methyl ester and phosphatidylglycerosulfate, plus a very small amount of phosphatidylglycerol and an archaeal analogue of bisphosphatidylglycerol. With regard to glycolipid composition, the most abundant glycolipids were the sulfated diglycosyl diphytanilglyceroldiether and a glycosyl-cardiolipin. The G+C content of strain S2FP14T genomic DNA was 61.4 mol%. The DNA-DNA hybridization between strain S2FP14T and Halobellus inordinatus JCM 18361T was 51 %. Based on the phylogenetic, phenotypic and chemotaxonomic features, a novel species, Halobellus ramosii sp. nov. is proposed. The type strain is S2FP14T ( = CECT 8167T = DSM 26177T).

10.
Int J Syst Evol Microbiol ; 64(Pt 6): 2066-2071, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24670895

RESUMO

A halophilic, Gram-staining-positive, non-motile, endospore forming rod-shaped bacterial strain, S1LM8(T), was isolated from a sediment sample collected from an inland solar saltern located in La Malahá, Granada (Spain). Growth was observed in media containing 7.5-30% total salts (optimum 15% total salts), at pH 7-10 (optimum pH 8) and at 15-50 °C (optimum 35-38 °C). The predominant isoprenoid quinone was MK-7. It contained A1γ-type peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid. The major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0), anteiso-C(17 : 0) and iso-C(16 : 0). The G+C content of its genomic DNA was 38.2 mol%. The affiliation of strain S1LM8(T) with the species of the genus Alkalibacillus was determined by 16S rRNA gene sequence comparison. The most closely related species were Alkalibacillus halophilus YIM 012(T) with 99.8% similarity, Alkalibacillus salilacus BH163(T) with 99.8% similarity and Alkalibacillus flavidus ISL-17(T) with 98.1% similarity between their 16S rRNA gene sequences. However, DNA-DNA relatedness between the novel isolate and the related species of the genus Alkalibacillus was less than 34%. Based on the phylogenetic, phenotypic and chemotaxonomic features, a novel species, Alkalibacillus almallahensis sp. nov. is proposed. The type strain is S1LM8(T) ( = CECT 8373(T) = DSM 27545(T)).


Assuntos
Bacillaceae/classificação , Filogenia , Microbiologia da Água , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio , Espanha , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
mSystems ; 9(3): e0095723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426791

RESUMO

Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.


Assuntos
Compostos Benzidrílicos , Microbiota , Obesidade Infantil , Fenóis , Feminino , Gravidez , Humanos , Criança , Sobrepeso , Obesidade Infantil/epidemiologia , Disbiose/induzido quimicamente , Xenobióticos , Clostridiaceae
12.
J Pediatr Gastroenterol Nutr ; 57(4): 461-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23752082

RESUMO

OBJECTIVES: There are many differences in the fecal infant microbiota associated with various feeding methods. The aim of this study was to examine the major differences in the fecal microbiota of breast-fed (BF) and formula-fed (FF) infants and to describe the principal bacterial components that would explain the variability in the predominant bacterial families and genus clusters. METHODS: Fecal samples from 58 infants, 31 of whom were exclusively BF and 27 of whom were exclusively FF with a standard formula in agreement with the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition recommendations, were analyzed by fluorescent in situ hybridization combined with flow cytometry. Principal component analysis was used to maximize the information gained for the predominant bacterial families and genus clusters using a minimal number of bacterial groups. RESULTS: The predominant detected group was Bifidobacterium, followed by Enterobacteriaceae and Bacteroides in both BF and FF infants. The Lactobacillus group was the only independent variable associated with FF infants. We also found that 3 principal components were sufficient to describe the association between the bacterial group, genus, and species studied in BF and FF infants; however, these components differed between BF and FF infants. For the former, the 3 factors found were Bifidobacterium/Enterobacteriaceae, Lactobacillus/Bacteroides, and Clostridium coccoides/Atopobium; for the latter, Bifidobacterium/Enterobacteriaceae, Bacteroides and C coccoides were observed. CONCLUSIONS: There is a clear clustering of components of infant microbiota based on the feeding method.


Assuntos
Bactérias , Alimentação com Mamadeira , Aleitamento Materno , Colo/microbiologia , Fezes/microbiologia , Microbiota , Humanos , Lactente , Fórmulas Infantis , Análise de Componente Principal , Especificidade da Espécie
13.
EFSA J ; 21(Suppl 1): e211010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38047127

RESUMO

On-going projects of the team are currently dealing with microbiota, xenobiotics, endocrine-disrupting chemicals (EDCs), obesity, inflammation and probiotics. The combination of diet, lifestyle and the exposure to dietary xenobiotics categorised into microbiota-disrupting chemicals (MDCs) could determine obesogenic-related dysbiosis. This modification of the microbiota diversity impacts on individual health-disease balance, inducing altered phenotypes. Specific, complementary, and combined prevention and treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, EU-FORA project contributes to present a perspective through compiling information and key strategies for directed taxa searching and culturing of NGP that could be administered for preventing obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analysing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) design and applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to xenobiotic obesogens' neutralisation effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps and proposals of solutions were also considered in this workplan.

14.
Microorganisms ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208920

RESUMO

Here, we report a first comprehensive genomic analysis of SARS-CoV-2 variants circulating in North African countries, including Algeria, Egypt, Libya, Morocco, Sudan and Tunisia, with respect to genomic clades and mutational patterns. As of December 2021, a total of 1669 high-coverage whole-genome sequences submitted to EpiCoV GISAID database were analyzed to infer clades and mutation annotation compared with the wild-type variant Wuhan-Hu-1. Phylogenetic analysis of SARS-CoV-2 genomes revealed the existence of eleven GISAID clades with GR (variant of the spike protein S-D614G and nucleocapsid protein N-G204R), GH (variant of the ORF3a coding protein ORF3a-Q57H) and GK (variant S-T478K) being the most common with 25.9%, 19.9%, and 19.6%, respectively, followed by their parent clade G (variant S-D614G) (10.3%). Lower prevalence was noted for GRY (variant S-N501Y) (5.1%), S (variant ORF8-L84S) (3.1%) and GV (variant of the ORF3a coding protein NS3-G251V) (2.0%). Interestingly, 1.5% of total genomes were assigned as GRA (Omicron), the newly emerged clade. Across the North African countries, 108 SARS-CoV-2 lineages using the Pangolin assignment were identified, whereby most genomes fell within six major lineages and variants of concern (VOC) including B.1, the Delta variants (AY.X, B.1.617.2), C.36, B.1.1.7 and B.1.1. The effect of mutations in SAR-CoV-2 genomes highlighted similar profiles with D614G spike (S) and ORF1b-P314L variants as the most changes found in 95.3% and 87.9% of total sequences, respectively. In addition, mutations affecting other viral proteins appeared frequently including; N:RG203KR, N:G212V, NSP3:T428I, ORF3a:Q57H, S:N501Y, M:I82T and E:V5F. These findings highlight the importance of genomic surveillance for understanding the SARS-CoV-2 genetic diversity and its spread patterns, leading to a better guiding of public health intervention measures. The know-how analysis of the present work could be implemented worldwide in order to overcome this health crisis through harmonized approaches.

16.
Front Microbiol ; 13: 872583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602014

RESUMO

Three areas of relevance to the gut microbiome in the context of One Health were explored; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and; specifically, in the context of antimicrobial resistance. Although challenging, focusing on the microbiota resilience, function and active components is critical for advancing the incorporation of microbiome data in the risk assessment of xenobiotics. Moreover, the human microbiota may be a promising source of beneficial components, with the potential to metabolize xenobiotics. These may have possible applications in several areas, e.g., in animals or plants for detoxification or in the environment for biodegradation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation.

17.
Nutrients ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057422

RESUMO

Integrated data from molecular and improved culturomics studies might offer holistic insights on gut microbiome dysbiosis triggered by xenobiotics, such as obesity and metabolic disorders. Bisphenol A (BPA), a dietary xenobiotic obesogen, was chosen for a directed culturing approach using microbiota specimens from 46 children with obesity and normal-weight profiles. In parallel, a complementary molecular analysis was carried out to estimate the BPA metabolising capacities. Firstly, catalogues of 237 BPA directed-cultured microorganisms were isolated using five selected media and several BPA treatments and conditions. Taxa from Firmicutes, Proteobacteria, and Actinobacteria were the most abundant in normal-weight and overweight/obese children, with species belonging to the genera Enterococcus, Escherichia, Staphylococcus, Bacillus, and Clostridium. Secondly, the representative isolated taxa from normal-weight vs. overweight/obese were grouped as BPA biodegrader, tolerant, or resistant bacteria, according to the presence of genes encoding BPA enzymes in their whole genome sequences. Remarkably, the presence of sporobiota and concretely Bacillus spp. showed the higher BPA biodegradation potential in overweight/obese group compared to normal-weight, which could drive a relevant role in obesity and metabolic dysbiosis triggered by these xenobiotics.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Exposição Dietética/efeitos adversos , Microbioma Gastrointestinal/genética , Obesidade Infantil/microbiologia , Fenóis/efeitos adversos , Xenobióticos/efeitos adversos , Actinobacillus/efeitos dos fármacos , Estudos de Casos e Controles , Criança , Disbiose/microbiologia , Feminino , Firmicutes/efeitos dos fármacos , Humanos , Masculino , Fenótipo , Proteobactérias/efeitos dos fármacos
18.
J Xenobiot ; 12(1): 56-63, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323221

RESUMO

Chemical risk assessment in the context of the risk analysis framework was initially designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the need of multiple stressors assessment was revealed to be more reliable regarding the occurrence and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started to be the recommended approach. As toxicant mixtures and their "cocktail effects" are considered to be main hazards, the most important exposure for these xenobiotics would be of dietary and environmental origin. In fact, even a more holistic prism should currently be considered. In this sense, the definition of One Health refers to simultaneous actions for improving human, animal, and environmental health through transdisciplinary cooperation. Global policies necessitate going beyond the classical risk assessment for guaranteeing human health through actions and implementation of the One Health approach. In this context, a new perspective is proposed for the integration of microbiome biomarkers and next generation probiotics potentially impacting and modulating not only human health, but plant, animal health, and the environment.

19.
Biofactors ; 48(2): 315-328, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34245620

RESUMO

Histidine metabolism is a key pathway physiologically involved in satiety, recognition memory, skin, and neural protection and allergic diseases. Microbiologically-produced imidazole propionate induces type II diabetes and interferes with glucose lowering drugs. Despite their determinant health implications, no single method simultaneously assesses histidine metabolites in urine, feces, and microbiota. The aim of this study was to develop a simple, rapid, and sensitive method for the determination of histidine and its major bioactive metabolites histamine, N-acetylhistamine, imidazole-4-acetate, cis-urocanate, trans-urocanate, glutamate and imidazole propionate, using ultrahigh-performance liquid chromatography with electrospray ionization tandem mass spectrometry. An innovative simple extraction method from small aliquots of human and mice urine, feces and microbial cell extracts was coupled to separation in a 6.5 min chromatographic run. The successful performance allowed accurate and precise quantification of all metabolites in mouse feces, suggesting broad exchange of histidine metabolites between the gut and mice. Higher urine histamine, histamine to histidine ratio, and imidazole-4-acetate pointed to an underlying inflammatory or allergic process in mice compared to human subjects. N-acetylhistamine and imidazole propionate were detected in human and mouse feces, confirming its origin from gut microbial metabolism. Our novel and robust analytical method captured histidine metabolism in a single assay that will facilitate broad and deep histidine metabolic phenotyping assessing the impact of microbiota on host health in large-scale human observational and interventional studies.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Animais , Cromatografia Líquida de Alta Pressão/métodos , Diabetes Mellitus Tipo 2/metabolismo , Histidina/metabolismo , Humanos , Camundongos , Espectrometria de Massas em Tandem/métodos
20.
Int J Syst Evol Microbiol ; 61(Pt 9): 2210-2214, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20935087

RESUMO

A Gram-negative, aerobic, moderately halophilic bacterium, designated Set74(T), was isolated from brine of a salt concentrator at Ain Oulmene, Algeria. The strain grew optimally at 37-40 °C, at pH 6.5-7.0 and with 5-7.5 % (w/v) NaCl and used various organic compounds as sole carbon, nitrogen and energy sources. Ubiquinone 9 (Q-9) was the major lipoquinone. The main cellular fatty acids were C16:0, C18:1ω9c, summed feature 7 (ECL 18.846; C19:0 cyclo ω10c and/or C19:1ω6c), C12:0 3-OH, C16:1ω9c, C18:0 and C12:0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genomic DNA was 57.4 mol%. The 16S rRNA gene sequence analysis indicated that strain Set74(T) was a member of the genus Marinobacter. The closest relatives of strain Set74(T) were Marinobacter santoriniensis NKSG1(T) (97.5 % 16S rRNA gene sequence similarity) and Marinobacter koreensis DD-M3(T) (97.4 %). DNA-DNA relatedness between strain Set74(T) and M. santoriniensis DSM 21262(T) and M. koreensis DSM 17924(T) was 45 and 37 %, respectively. On the basis of the phenotypic, chemotaxonomic and phylogenetic features, a novel species, Marinobacter oulmenensis sp. nov., is proposed. The type strain is Set74(T) ( = CECT 7499(T)  = DSM 22359(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Marinobacter/classificação , Marinobacter/isolamento & purificação , Argélia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carbono/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Marinobacter/genética , Marinobacter/fisiologia , Dados de Sequência Molecular , Nitrogênio/metabolismo , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA