Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355422

RESUMO

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Proteínas Qa-SNARE/genética , Audição/genética , Células Ciliadas Auditivas Externas
2.
Cell ; 141(5): 786-98, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20510926

RESUMO

Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets but distinct from bundles formed by espin, an actin crosslinker in stereocilia. We generated mutant Triobp mice (Triobp(Deltaex8/Deltaex8)) that are profoundly deaf. Stereocilia of Triobp(Deltaex8/Deltaex8) mice develop normally but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere.


Assuntos
Citoesqueleto de Actina/metabolismo , Surdez/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Células Ciliadas Auditivas Internas/citologia , Humanos , Mecanotransdução Celular , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular
3.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102099

RESUMO

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Alelos , Animais , Análise Mutacional de DNA , Feminino , Células HEK293 , Humanos , Masculino , Linhagem , Ratos , Peixe-Zebra/genética
4.
Mol Ther ; 31(12): 3490-3501, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37864333

RESUMO

Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Mutação , Caderinas/genética , Caderinas/metabolismo
5.
Am J Hum Genet ; 105(4): 869-878, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564433

RESUMO

Intellectual disability (ID) is a genetically and clinically heterogeneous disorder, characterized by limited cognitive abilities and impaired adaptive behaviors. In recent years, exome sequencing (ES) has been instrumental in deciphering the genetic etiology of ID. Here, through ES of a large cohort of individuals with ID, we identified two bi-allelic frameshift variants in METTL5, c.344_345delGA (p.Arg115Asnfs∗19) and c.571_572delAA (p.Lys191Valfs∗10), in families of Pakistani and Yemenite origin. Both of these variants were segregating with moderate to severe ID, microcephaly, and various facial dysmorphisms, in an autosomal-recessive fashion. METTL5 is a member of the methyltransferase-like protein family, which encompasses proteins with a seven-beta-strand methyltransferase domain. We found METTL5 expression in various substructures of rodent and human brains and METTL5 protein to be enriched in the nucleus and synapses of the hippocampal neurons. Functional studies of these truncating variants in transiently transfected orthologous cells and cultured hippocampal rat neurons revealed no effect on the localization of METTL5 but alter its level of expression. Our in silico analysis and 3D modeling simulation predict disruption of METTL5 function by both variants. Finally, mettl5 knockdown in zebrafish resulted in microcephaly, recapitulating the human phenotype. This study provides evidence that biallelic variants in METTL5 cause ID and microcephaly in humans and highlights the essential role of METTL5 in brain development and neuronal function.


Assuntos
Alelos , Genes Recessivos , Deficiência Intelectual/genética , Metiltransferases/genética , Microcefalia/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
6.
J Med Genet ; 58(7): 442-452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32709676

RESUMO

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Assuntos
Microbiota , Otite Média/genética , Otite Média/microbiologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Criança , Suscetibilidade a Doenças/microbiologia , Orelha Externa/microbiologia , Orelha Média/microbiologia , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Boca/microbiologia , Nasofaringe/microbiologia , Linhagem , Análise de Sequência de DNA , Análise de Sequência de RNA
7.
Eye Contact Lens ; 48(1): 27-32, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608027

RESUMO

OBJECTIVE: To identify corneal structure differences on quantitative high-frequency ultrasound biomicroscopy (UBM) among subjects with congenital glaucoma compared with controls. METHODS: This prospective case-control study evaluated 180 UBM images from 44 eyes of 30 subjects (18 control and 12 glaucoma, mean age 5.2±8.0 years, range 0.2-25.8 years) enrolled in the Pediatric Anterior Segment Imaging and Innovation Study (PASIIS). ImageJ was used to quantify a comprehensive set of corneal structures according to 21 quantitative parameters. Statistical analysis compared corneal measurements in glaucoma subtypes and age-matched controls with significance testing and mixed effects models. RESULTS: Significant differences between congenital glaucoma cases and controls were identified in 16 of 21 measured parameters including angle-to-angle, central and peripheral corneal thicknesses, scleral integrated pixel density, anterior corneal radius of curvature, and posterior corneal radius of curvature. Eight parameters differed significantly between primary congenital glaucoma and glaucoma following congenital cataract surgery. CONCLUSION: Multiple measurable corneal structural differences exist between congenital glaucoma and control eyes, and between primary and secondary congenital glaucoma, including but not limited to corneal width and thickness. The structural differences can be quantified from UBM image analysis. Further studies are needed to determine whether corneal features associated with glaucoma can be used to diagnose or monitor progression of congenital glaucoma.


Assuntos
Glaucoma , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Córnea/diagnóstico por imagem , Glaucoma/diagnóstico , Humanos , Lactente , Microscopia Acústica , Esclera , Adulto Jovem
8.
Hum Mol Genet ; 28(13): 2212-2223, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220269

RESUMO

Alström syndrome (OMIM #203800) is an autosomal recessive obesity ciliopathy caused by loss-of-function mutations in the ALMS1 gene. In addition to multi-organ dysfunction, such as cardiomyopathy, retinal degeneration and renal dysfunction, the disorder is characterized by high rates of obesity, insulin resistance and early-onset type 2 diabetes mellitus (T2DM). To investigate the underlying mechanisms of T2DM phenotypes, we generated a loss-of-function deletion of alms1 in the zebrafish. We demonstrate conservation of hallmark clinical characteristics alongside metabolic syndrome phenotypes, including a propensity for obesity and fatty livers, hyperinsulinemia and glucose response defects. Gene expression changes in ß-cells isolated from alms1-/- mutants revealed changes consistent with insulin hypersecretion and glucose sensing failure, which were corroborated in cultured murine ß-cells lacking Alms1. We also found evidence of defects in peripheral glucose uptake and concomitant hyperinsulinemia in the alms1-/- animals. We propose a model in which hyperinsulinemia is the primary and causative defect underlying generation of T2DM associated with alms1 deficiency. These observations support the alms1 loss-of-function zebrafish mutant as a monogenic model for mechanistic interrogation of T2DM phenotypes.


Assuntos
Síndrome de Alstrom/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Insuficiência Renal/genética , Degeneração Retiniana/genética , Peixe-Zebra/genética , Síndrome de Alstrom/fisiopatologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Intolerância à Glucose , Hiperinsulinismo/genética , Células Secretoras de Insulina/metabolismo , Camundongos , Modelos Biológicos , Obesidade/genética , Fenótipo , Peixe-Zebra/embriologia
9.
Am J Hum Genet ; 103(6): 1045-1052, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526862

RESUMO

We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.


Assuntos
Agressão/fisiologia , Nanismo/genética , Variação Genética/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Microcefalia/genética , Adolescente , Animais , Criança , Drosophila melanogaster/genética , Éxons/genética , Feminino , Técnicas de Inativação de Genes/métodos , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA de Transferência/genética
10.
Genet Med ; 23(7): 1246-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824500

RESUMO

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Sequenciamento do Exoma
11.
PLoS Genet ; 14(3): e1007297, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590114

RESUMO

Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chromosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associated hearing loss in two large apparently unrelated Pakistani families. PPIP5Ks enzymes interconvert 5-IP7 and IP8, two key members of the inositol pyrophosphate (PP-IP) cell-signaling family. Their actions at the interface of cell signaling and bioenergetic homeostasis can impact many biological processes. The c.2510G>A transition variant is predicted to substitute a highly invariant arginine residue with histidine (p.Arg837His) in the phosphatase domain of PPIP5K2. Biochemical studies revealed that the p.Arg837His variant reduces the phosphatase activity of PPIP5K2 and elevates its kinase activity. We found that in mouse inner ear, PPIP5K2 is expressed in the cochlear and vestibular sensory hair cells, supporting cells and spiral ganglion neurons. Mice homozygous for a targeted deletion of the Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and elevated hearing thresholds. Our demonstration that PPIP5K2 has a role in hearing in humans indicates that PP-IP signaling is important to hair cell maintenance and function within inner ear.


Assuntos
Perda Auditiva Neurossensorial/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Animais , Cromossomos Humanos Par 5 , Orelha Interna/fisiopatologia , Exoma , Feminino , Genes Recessivos , Ligação Genética , Células Ciliadas Auditivas Internas , Homeostase , Humanos , Masculino , Camundongos , Linhagem , Mutação Puntual
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638995

RESUMO

Hereditary congenital cataract (HCC) is clinically and genetically heterogeneous. We investigated HCC that segregates in three inbred families (LUCC03, LUCC16, and LUCC24). Ophthalmological examinations revealed cataracts with variability related to the age of onset segregating in a recessive manner in these families. Exome sequencing of probands identified a novel homozygous c.2710delG;p.(Val904Cysfs*36) EPHA2 variant in LUCC03 and a known homozygous c.2353G>A;p.(Ala785Thr) EPHA2 variant in the other two recessive families. EPHA2 encodes a transmembrane tyrosine kinase receptor, which is primarily involved in membrane-transport, cell-cell adhesion, and repulsion signaling processes. Computational structural modeling predicts that substitution of a threonine for an alanine p.(Ala785Thr) results in the formation of three new hydrogen bonds with the neighboring residues, which causes misfolding of EPHA2 in both scenarios. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of EPHA2-related HCC.


Assuntos
Alelos , Catarata/congênito , Catarata/genética , Consanguinidade , Mutação de Sentido Incorreto , Receptor EphA2/genética , Família , Feminino , Homozigoto , Humanos , Masculino , Paquistão , Linhagem , Fenótipo , Sequenciamento do Exoma/métodos
13.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008666

RESUMO

Congenital cataracts (CC) are responsible for approximately one-tenth of childhood blindness cases globally. Here, we report an African American family with a recessively inherited form of CC. The proband demonstrated decreased visual acuity and bilateral cataracts, with nuclear and cortical cataracts in the right and left eye, respectively. Exome sequencing revealed a novel homozygous variant (c.563A > G; p.(Asn188Ser)) in GJA3, which was predicted to be pathogenic by structural analysis. Dominantly inherited variants in GJA3 are known to cause numerous types of cataracts in various populations. Our study represents the second case of recessive GJA3 allele, and the first report in African Americans. These results validate GJA3 as a bona fide gene for recessively inherited CC in humans.


Assuntos
Catarata/congênito , Catarata/genética , Conexinas/química , Conexinas/genética , Mutação de Sentido Incorreto/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Homozigoto , Humanos , Domínios Proteicos
14.
Mol Biol Rep ; 47(12): 9987-9993, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33231815

RESUMO

Hearing loss (HL) is clinically and genetically heterogeneous disorder and is the most frequent occurring sensory deficit in humans. This study was conducted to decipher the genetic cause of HL occurring in two large consanguineous Pakistani families (GCNF-01, GCNF-03). Family history and pure tone audiometry of both families suggested prelingual HL, while the affected individuals of GCNF-01 also had low vision and balance problems, consistent with cardinal features of Usher syndrome type I (USH1). Exome sequencing followed by segregating analysis revealed a novel splice site variant (c.877-1G > A) of USH1C occurring with USH1 phenotype in family GCNF01. While the affected individual of family GCNF-03 were homozygous for the c.716 T > A, p.(Val239Asp) previously reported pathogenic variant of SLC26A4. Both variants have very low frequencies in control database. In silico mutagenesis and 3-dimensional simulation analyses revealed that both variants have deleterious impact on the proteins folding and secondary structures. Our study expands the mutation spectrum of the HL genes and emphasizes the utility of exome sequencing coupled with bioinformatics tools for clinical genetic diagnosis, prognosis, and family counseling.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Transportadores de Sulfato/genética , Síndromes de Usher/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Paquistão/epidemiologia , Síndromes de Usher/epidemiologia , Sequenciamento do Exoma
15.
Hum Mutat ; 40(1): 53-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303587

RESUMO

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Assuntos
Segregação de Cromossomos/genética , Consanguinidade , Perda Auditiva/genética , Família , Feminino , Genes Recessivos , Predisposição Genética para Doença , Humanos , Masculino , Mutação/genética , Paquistão , Linhagem
16.
Hum Mutat ; 40(8): 1156-1171, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009165

RESUMO

A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.


Assuntos
Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Mutação , Otite Média/genética , Análise de Sequência de DNA/métodos , alfa-Macroglobulinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Finlândia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Filipinas , Análise de Sequência de RNA , Transdução de Sinais , Estados Unidos , Adulto Jovem
17.
Mol Vis ; 25: 144-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820150

RESUMO

Purpose: Primary congenital glaucoma (PCG) is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic causes of PCG segregating in 36 large consanguineous Pakistani families. Methods: Ophthalmic examination including fundoscopy, or slit-lamp microscopy was performed to clinically characterize the PCG phenotype. Genomic nucleotide sequences of the CYP1B1 and LTBP2 genes were analyzed with either Sanger or whole exome sequencing. In silico prediction programs were used to assess the pathogenicity of identified alleles. ClustalW alignments were performed to determine evolutionary conservation, and three-dimensional (3D) modeling was performed using HOPE and Phyre2 software. Results: Among the known loci, mutations in CYP1B1 and LTBP2 are the common causes of PCG. Therefore, we analyzed the genomic nucleotide sequences of CYP1B1 and LTBP2, and detected probable pathogenic variants cosegregating with PCG in 14 families. These included the three novel (c.542T>A, c.1436A>G, and c.1325delC) and five known (c.868dupC, c.1168C>T, c.1169G>A, c.1209InsTCATGCCACC, and c.1310C>T) variants in CYP1B1. Two of the novel variants are missense substitutions [p.(Leu181Gln), p.(Gln479Arg)], which replaced evolutionary conserved amino acids, and are predicted to be pathogenic by various in silico programs, while the third variant (c.1325delC) is predicted to cause reading frameshift and premature truncation of the protein. A single mutation, p.(Arg390His), causes PCG in six (~43%) of the 14 CYP1B1 mutations harboring families, and thus, is the most common variant in this cohort. Surprisingly, we did not find any LTBP2 pathogenic variants in the families, which further supports the genetic heterogeneity of PCG in the Pakistani population. Conclusions: In conclusion, results of the present study enhance our understanding of the genetic basis of PCG, support the notion of a genetic modifier of CYP1B1, and contribute to the development of genetic testing protocols and genetic counseling for PCG in Pakistani families.


Assuntos
Citocromo P-450 CYP1B1/genética , Heterogeneidade Genética , Glaucoma/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Expressão Gênica , Frequência do Gene , Glaucoma/congênito , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Lactente , Proteínas de Ligação a TGF-beta Latente/genética , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Alinhamento de Sequência , Trabeculectomia/métodos
18.
J Med Genet ; 55(7): 479-488, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572253

RESUMO

BACKGROUND: Usher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH. METHODS: Genome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype. RESULTS: Through homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals. CONCLUSION: Our study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.


Assuntos
Vertigem Posicional Paroxística Benigna/genética , Surdez/genética , Proteínas dos Microfilamentos/genética , Transtornos da Visão/genética , Adulto , Animais , Vertigem Posicional Paroxística Benigna/fisiopatologia , Surdez/fisiopatologia , Ligação Genética/genética , Predisposição Genética para Doença , Genótipo , Homozigoto , Humanos , Camundongos , Mutação , Linhagem , Fenótipo , Retina/metabolismo , Retina/fisiopatologia , Deleção de Sequência/genética , Transtornos da Visão/fisiopatologia , Sequenciamento do Exoma , Adulto Jovem
19.
PLoS Genet ; 11(3): e1005097, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25807530

RESUMO

Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.


Assuntos
Aspartato-tRNA Ligase/genética , Doença de Leigh/genética , Aminoacil-RNA de Transferência/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Aspartato-tRNA Ligase/biossíntese , Surdez/genética , Surdez/patologia , Orelha Interna/metabolismo , Orelha Interna/patologia , Feminino , Fibroblastos , Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Doença de Leigh/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação de Sentido Incorreto/genética , Consumo de Oxigênio/genética , Linhagem
20.
Ophthalmology ; 124(7): 1004-1013, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366503

RESUMO

PURPOSE: To describe a novel macular phenotype that is associated with normal visual function. DESIGN: Retrospective, observational case series. PARTICIPANTS: Thirty-six affected individuals from 23 unrelated families. METHODS: This was a retrospective study of patients who had a characteristic macular phenotype. Subjects underwent a full ocular examination, electrophysiologic studies, spectral-domain optical coherence tomography (OCT), and fundus autofluorescence imaging. Genomic analyses were performed using haplotype sharing analysis and whole-exome sequencing. MAIN OUTCOME MEASURES: Visual acuity, retinal features, electroretinography, and whole-exome sequencing. RESULTS: Twenty-six of 36 subjects were female. The median age of subjects at presentation was 15 years (range, 5-59 years). The majority of subjects were asymptomatic and presented after a routine eye examination (22/36 subjects) or after screening because of a positive family history (13/36 subjects) or by another ophthalmologist (1/36 subjects). Of the 3 symptomatic subjects, 2 had reduced visual acuity secondary to nonorganic visual loss and bilateral ametropic amblyopia with strabismus. Visual acuity was 0.18 logarithm of the minimum angle of resolution (logMAR) or better in 30 of 33 subjects. Color vision was normal in all subjects tested, except for the subject with nonorganic visual loss. All subjects had bilateral symmetric multiple yellow dots at the macula. In the majority of subjects, these were evenly distributed throughout the fovea, but in 9 subjects they were concentrated in the nasal parafoveal area. The dots were hyperautofluorescent on fundus autofluorescence imaging. The OCT imaging was generally normal, but in 6 subjects subtle irregularities at the inner segment ellipsoid band were seen. Electrophysiologic studies identified normal macular function in 17 of 19 subjects and normal full-field retinal function in all subjects. Whole-exome analysis across 3 unrelated families found no pathogenic variants in known macular dystrophy genes. Haplotype sharing analysis in 1 family excluded linkage with the North Carolina macular dystrophy (MCDR1) locus. CONCLUSIONS: A new retinal phenotype is described, which is characterized by bilateral multiple early-onset yellow dots at the macula. Visual function is normal, and the condition is nonprogressive. In familial cases, the phenotype seems to be inherited in an autosomal dominant manner, but a causative gene is yet to be ascertained.


Assuntos
Proteínas do Olho/genética , Macula Lutea/patologia , Degeneração Macular/diagnóstico , Mutação , Acuidade Visual , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Exoma , Proteínas do Olho/metabolismo , Feminino , Angiofluoresceinografia , Seguimentos , Fundo de Olho , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estudos Retrospectivos , Tomografia de Coerência Óptica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA