Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Bacteriol ; 204(12): e0034422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36383008

RESUMO

Pathogens are becoming resistant to antimicrobials at an increasing rate, and novel therapeutic strategies are needed. Using Salmonella as a model, we have investigated the induction of sugar-phosphate toxicity as a potential therapeutic modality. The approach entails providing a nutrient while blocking the catabolism of that nutrient, resulting in the accumulation of a toxic intermediate. We hypothesize that this build-up will decrease the fitness of the organism during infection given nutrient availability. We tested this hypothesis using mutants lacking one of seven genes whose mutation is expected to cause the accumulation of a toxic metabolic intermediate. The araD, galE, rhaD, glpD, mtlD, manA, and galT mutants were then provided the appropriate sugars, either in vitro or during gastrointestinal infection of mice. All but the glpD mutant had nutrient-dependent growth defects in vitro, suggestive of sugar-phosphate toxicity. During gastrointestinal infection of mice, five mutants had decreased fitness. Providing the appropriate nutrient in the animal's drinking water was required to cause fitness defects with the rhaD and manA mutants and to enhance the fitness defect of the araD mutant. The galE and mtlD mutants were severely attenuated regardless of the nutrient being provided in the drinking water. Homologs of galE are widespread among bacteria and in humans, rendering the specific targeting of bacterial pathogens difficult. However, the araD, mtlD, and rhaD genes are not present in humans, appear to be rare in most phyla of bacteria, and are common in several genera of Enterobacteriaceae, making the encoded enzymes potential narrow-spectrum therapeutic targets. IMPORTANCE Bacterial pathogens are becoming increasingly resistant to antibiotics. There is an urgent need to identify novel drug targets and therapeutic strategies. In this work we have assembled and characterized a collection of mutations in our model pathogen, Salmonella enterica, that block a variety of sugar utilization pathways in such a way as to cause the accumulation of a toxic sugar-phosphate. Mutations in three genes, rhaD, araD, and mtlD, dramatically decrease the fitness of Salmonella in a mouse model of gastroenteritis, suggesting that RhaD, AraD, and MtlD may be good narrow-spectrum drug targets. The induction of sugar-phosphate toxicities may be a therapeutic strategy that is broadly relevant to other bacterial and fungal pathogens.


Assuntos
Água Potável , Salmonella enterica , Humanos , Animais , Camundongos , Água Potável/metabolismo , Salmonella/genética , Salmonella enterica/genética , Açúcares/metabolismo , Fosfatos/metabolismo
2.
Appl Environ Microbiol ; 88(20): e0114022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197091

RESUMO

Thermal pasteurization of shell eggs, at various time-temperature combinations, has been proposed previously and implemented industrially. This study was conducted to determine if shell egg heating rate, which varies with different pasteurization implementations, alters the Salmonella enterica serovar Enteritidis response to different stresses or expression of virulence. Shell eggs, containing Salmonella Enteritidis in yolk, were subjected to a low (2.4°C/min) or a high (3.5°C/min) heating rate during treatments that mimicked the pasteurization temperature come-up stage. The low heating rate protected Salmonella from the following processes: (i) lethal heat at the holding stage, (ii) loss of viability during 8-h cooling after heating, and (iii) sequential antimicrobial ozone treatment. Transcriptional analysis using Salmonella reporter strains revealed that the heat stress response gene grpE was transcribed at 3-fold-higher levels (P = 0.0009) at the low than at the high heating rate. Slow heating also significantly increased the transcription of the Salmonella virulence-related genes sopB (P = 0.0012) and sseA (P = 0.0006) in comparison to fast heating. Salmonella virulence was determined experimentally as 50% lethal dose (LD50) values in an in vivo model. The slow heat treatment mildly increased Salmonella Enteritidis virulence in mice (LD50 of 3.3 log CFU), compared to that in nontreated yolk (LD50 of 3.9 log CFU). However, when ozone application followed the slow heat treatment, Salmonella virulence decreased (LD50 of 4.2 log CFU) compared to that for heat-treated or nontreated yolk. In conclusion, heating shell eggs at a low rate can trigger hazardous responses that may compromise the safety of the final pasteurized products but following the thermal treatment with ozone application may help alleviate these concerns. IMPORTANCE Pasteurization of shell eggs is an important technology designed to protect consumers against Salmonella Enteritidis that contaminates this commodity. A low heating rate is preferred over a high rate during shell egg thermal pasteurization due to product quality concern. However, it is not known whether raising the temperature at different rates, during pasteurizing, would potentially affect product safety determinants. The current study demonstrated that slow heating during the pasteurization come-up stage increased the following risks: (i) resistance of Salmonella to pasteurization holding stage or to subsequent ozone treatment, (ii) recovery of Salmonella during the cooling that followed pasteurization, and (iii) Salmonella's ability to cause disease (i.e., virulence). Our findings inform food processors about potential safety risks to consumers resulting from improper use of processing parameters during shell egg pasteurization. Additionally, treating shell eggs with ozone after heat treatment could alleviate these hazards and protect consumers from natural Salmonella Enteritidis contaminants in shell eggs.


Assuntos
Ozônio , Salmonella enteritidis , Animais , Camundongos , Pasteurização/métodos , Calefação , Virulência , Temperatura Alta , Ovos , Ozônio/farmacologia , Casca de Ovo/química , Contagem de Colônia Microbiana , Microbiologia de Alimentos
3.
Anal Bioanal Chem ; 414(7): 2317-2331, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106611

RESUMO

Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris-HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.


Assuntos
Microbioma Gastrointestinal , Proteômica , Animais , Proteínas de Bactérias/metabolismo , Fezes/microbiologia , Camundongos , Proteômica/métodos , Reprodutibilidade dos Testes
4.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483291

RESUMO

Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.


Assuntos
Asparagina/metabolismo , Frutose/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/metabolismo , Salmonelose Animal/imunologia , Salmonelose Animal/metabolismo , Salmonella enterica/imunologia , Salmonella enterica/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Salmonelose Animal/patologia , Salmonella enterica/patogenicidade
5.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269489

RESUMO

Salmonella enterica serovar Typhimurium is the only organism demonstrated to utilize fructose-asparagine (F-Asn) as a source of carbon and nitrogen. In this report, we first used a bioinformatics approach to identify other microorganisms that encode homologs of the Salmonella F-Asn utilization enzymes FraB (deglycase), FraD (kinase), and FraE (asparaginase). These candidate organisms were then tested with up to four different methods to confirm their ability to utilize F-Asn. The easiest and most broadly applicable method utilized a biological toxicity assay, which is based on the observation that F-Asn is toxic to a Salmonella fraB mutant. Candidate organisms were grown in a rich medium containing F-Asn, and depletion of F-Asn from the medium was inferred by the growth of a Salmonella fraB mutant in that same medium. For select organisms, the toxicity assay was cross-validated by direct mass spectrometry-aided measurement of F-Asn in the spent-culture media and through demonstration of FraB and FraD enzyme activity in cellular extracts. For prototrophs, F-Asn utilization was additionally confirmed by growth in a minimal medium containing F-Asn as the sole carbon source. Collectively, these studies established that Clostridiumbolteae, Clostridium acetobutylicum, and Clostridium clostridioforme can utilize F-Asn, but Clostridium difficile cannot; Klebsiella oxytoca and some Klebsiella pneumoniae subspecies can utilize F-Asn; and some Citrobacter rodentium and Citrobacter freundii strains can also utilize F-Asn. Within Salmonella enterica, the host-adapted serovars Typhi and Paratyphi A have lost the ability to utilize F-Asn.IMPORTANCE Fructose-asparagine (F-Asn) is a precursor to acrylamide that is found in human foods, and it is also a nutrient source for Salmonella enterica, a foodborne pathogen. Here, we determined that among the normal intestinal microbiota, there are species of Clostridium that encode the enzymes required for F-Asn utilization. Using complementary experimental approaches, we have confirmed that three members of Clostridium, two members of Klebsiella, and two members of Citrobacter can indeed utilize F-Asn. The Clostridium spp. likely compete with Salmonella for F-Asn in the gut and contribute to competitive exclusion. FraB, one of the enzymes in the F-Asn utilization pathway, is a potential drug target because inhibition of this enzyme leads to the accumulation of a toxic metabolite that inhibits the growth of Salmonella species. This study identifies the potential off-target organisms that need to be considered when developing therapeutics directed at FraB.


Assuntos
Asparagina/metabolismo , Bactérias/metabolismo , Frutose/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/instrumentação , Citrobacter/classificação , Citrobacter/isolamento & purificação , Citrobacter/metabolismo , Clostridium/classificação , Clostridium/isolamento & purificação , Clostridium/metabolismo , Biologia Computacional , Klebsiella/classificação , Klebsiella/isolamento & purificação , Klebsiella/metabolismo , Salmonella/classificação , Salmonella/isolamento & purificação , Salmonella/metabolismo , Sorogrupo
6.
J Bacteriol ; 199(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847920

RESUMO

Salmonella enterica can utilize fructose-asparagine (F-Asn) as a source of carbon and nitrogen. This capability has been attributed to five genes in the fra locus. Previously, we determined that mutations in fraB (deglycase), fraD (kinase), or fraA (transporter) eliminated the ability of Salmonella to grow on F-Asn, while a mutation in fraE allowed partial growth. We hypothesized that FraE, a putative periplasmic fructose-asparaginase, converts F-Asn to NH4 + and fructose-aspartate (F-Asp). FraA could then transport F-Asp into the cytoplasm for subsequent catabolism. Here, we report that growth of the fraE mutant on F-Asn is caused by a partially redundant activity provided by AnsB, a periplasmic asparaginase. Indeed, a fraE ansB double mutant is unable to grow on F-Asn. Moreover, biochemical assays using periplasmic extracts of mutants that express only FraE or AnsB confirmed that each of these enzymes converts F-Asn to F-Asp and NH4 + However, FraE does not contribute to growth on asparagine. We tested and confirmed the hypothesis that a fraE ansB mutant can grow on F-Asp, while mutants lacking fraA, fraD, or fraB cannot. This finding provides strong evidence that FraA transports F-Asp but not F-Asn from the periplasm to the cytoplasm. Previously, we determined that F-Asn is toxic to a fraB mutant due to the accumulation of the FraB substrate, 6-phosphofructose-aspartate (6-P-F-Asp). Here, we found that, as expected, a fraB mutant is also inhibited by F-Asp. Collectively, these findings contribute to a better understanding of F-Asn utilization by Salmonella IMPORTANCE Salmonella is able to utilize fructose-asparagine (F-Asn) as a nutrient. We recently reported that the disruption of a deglycase enzyme in the F-Asn utilization pathway inhibits the growth of Salmonella in mice and recognized this pathway as a novel and specific drug target. Here, we characterize the first step in the pathway wherein FraE hydrolyzes F-Asn to release NH4 + and F-Asp in the periplasm of the cell. A fraE mutant continues to grow slowly on F-Asn due to asparaginase activity encoded by ansB.

7.
Brain Behav Immun ; 60: 44-50, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27633986

RESUMO

Exposure to a prolonged restraint stressor disrupts the colonic microbiota community composition, and is associated with an elevated inflammatory response to colonic pathogen challenge. Since the stability of the microbiota has been implicated in the development and modulation of mucosal immune responses, we hypothesized that the disruptive effect of the stressor upon the microbiota composition directly contributed to the stressor-induced exacerbation of pathogen-induced colitis. In order to establish a causative role for stressor-induced changes in the microbiota, conventional mice were exposed to prolonged restraint to change the microbiota. Germfree mice were then colonized by microbiota from either stressor-exposed or non-stressed control mice. One day after colonization, mice were infected with the colonic pathogen, Citrobacter rodentium. At six days post-infection, mice that received microbiota from stressor-exposed animals had significant increases in colonic pathology and pro-inflammatory cytokine (e.g. IL-1ß) and chemokine (e.g. CCL2) levels after C. rodentium infection in comparison with mice that received microbiota from non-stressed mice. 16S rRNA gene sequencing revealed that microbial communities from stressed mice did not have any detectable Bifidobacterium present, a stark contrast with the microbial communities from non-stressed mice, suggesting that stressor-induced alterations in commensal, immunomodulatory Bifidobacterium levels may predispose to an increased inflammatory response to pathogen challenge. This study demonstrates that the commensal microbiota directly contribute to excessive inflammatory responses to C. rodentium during stressor exposure, and may help to explain why gastrointestinal disorders are worsened during stressful experiences.


Assuntos
Citrobacter rodentium/imunologia , Mucosa Intestinal/imunologia , Microbiota/imunologia , Estresse Fisiológico/imunologia , Animais , Colo/imunologia , Colo/patologia , Suscetibilidade a Doenças/imunologia , Imunidade nas Mucosas/imunologia , Masculino , Camundongos , Simbiose/imunologia
8.
Infect Immun ; 84(7): 2131-2140, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27185789

RESUMO

Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.


Assuntos
Probióticos , Infecções por Salmonella/microbiologia , Salmonella/metabolismo , Animais , Modelos Animais de Doenças , Engenharia Genética , Camundongos , Mutação , Locos de Características Quantitativas , Salmonella/genética , Infecções por Salmonella/terapia , Salmonella enterica
9.
PLoS Pathog ; 10(6): e1004209, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967579

RESUMO

Salmonella enterica serovar Typhimurium (Salmonella) is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn), which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10-/- mice). The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1- SPI2- or ttrA mutants, respectively). The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.


Assuntos
Asparagina/metabolismo , Frutose/metabolismo , Mucosa Intestinal/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Anaerobiose , Animais , Proteínas de Bactérias/genética , Transporte Biológico/genética , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-10/genética , Intestinos/imunologia , Intestinos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonelose Animal/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
10.
J Immunol ; 190(5): 2229-40, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23338236

RESUMO

CXCR3, expressed mainly on activated T and NK cells, is implicated in a host of immunological conditions and can contribute either to disease resolution or pathology. We report the generation and characterization of a novel CXCR3 internal ribosome entry site bicistronic enhanced GFP reporter (CIBER) mouse in which enhanced GFP expression correlates with surface levels of CXCR3. Using CIBER mice, we identified two distinct populations of innate CD8(+) T cells based on constitutive expression of CXCR3. We demonstrate that CXCR3(+) innate CD8(+) T cells preferentially express higher levels of Ly6C and CD122, but lower levels of CCR9 compared with CXCR3(-) innate CD8(+) T cells. Furthermore, we show that CXCR3(+) innate CD8(+) T cells express higher transcript levels of antiapoptotic but lower levels of proapoptotic factors, respond more robustly to IL-2 and IL-15, and produce significantly more IFN-γ and granzyme B. Interestingly, CXCR3(+) innate CD8(+) T cells do not respond to IL-12 or IL-18 alone, but produce significant amounts of IFN-γ on stimulation with a combination of these cytokines. Taken together, these findings demonstrate that CXCR3(+) and CXCR3(-) innate CD8(+) T cells are phenotypically and functionally distinct. These newly generated CIBER mice provide a novel tool for studying the role of CXCR3 and CXCR3-expressing cells in vivo.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linhagem da Célula/imunologia , Efeito Fundador , Imunidade Inata , Camundongos Transgênicos/imunologia , Receptores CXCR3/genética , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/classificação , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Proliferação de Células , Citocinas/biossíntese , Citocinas/imunologia , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Masculino , Camundongos , Microscopia de Vídeo , Receptores CCR/genética , Receptores CCR/imunologia , Receptores CXCR3/imunologia
11.
J Bacteriol ; 196(12): 2301-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727228

RESUMO

Salmonella enterica serovar Typhimurium is a food-borne pathogen that causes severe gastroenteritis. The ability of Salmonella to cause disease depends on two type III secretion systems (T3SSs) encoded in two distinct Salmonella pathogenicity islands, 1 and 2 (SPI1 and SPI2, respectively). S. Typhimurium encodes a solo LuxR homolog, SdiA, which can detect the acyl-homoserine lactones (AHLs) produced by other bacteria and upregulate the rck operon and the srgE gene. SrgE is predicted to encode a protein of 488 residues with a coiled-coil domain between residues 345 and 382. In silico studies have provided conflicting predictions as to whether SrgE is a T3SS substrate. Therefore, in this work, we tested the hypothesis that SrgE is a T3SS effector by two methods, a ß-lactamase activity assay and a split green fluorescent protein (GFP) complementation assay. SrgE with ß-lactamase fused to residue 40, 100, 150, or 300 was indeed expressed and translocated into host cells, but SrgE with ß-lactamase fused to residue 400 or 488 was not expressed, suggesting interference by the coiled-coil domain. Similarly, SrgE with GFP S11 fused to residue 300, but not to residue 488, was expressed and translocated into host cells. With both systems, translocation into host cells was dependent upon SPI2. A phylogenetic analysis indicated that srgE is found only within Salmonella enterica subspecies. It is found sporadically within both typhoidal and nontyphoidal serovars, although the SrgE protein sequences found within typhoidal serovars tend to cluster separately from those found in nontyphoidal serovars, suggesting functional diversification.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Camundongos , Filogenia , Proteínas Recombinantes , Salmonella typhimurium/genética , Transativadores/genética
12.
Infect Immun ; 82(1): 174-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126528

RESUMO

Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within macrophages. Given the distinctly different outcomes that occur with regard to host cell uptake of S. Typhimurium and Y. enterocolitica, we investigated how each pathogen influences the internalization outcome of the other. Y. enterocolitica reduces S. Typhimurium invasion of HeLa and Caco-2 cells to a level similar to that observed using an S. Typhimurium SPI1 mutant alone. However, Y. enterocolitica had no effect on S. Typhimurium uptake by J774.1 or RAW264.7 macrophage-like cells. Y. enterocolitica was also able to inhibit the invasion of epithelial and macrophage-like cells by Listeria monocytogenes. Y. enterocolitica mutants lacking either the Ysa or Ysc T3SS were partially defective, while double mutants were completely defective, in blocking S. Typhimurium uptake by epithelial cells. S. Typhimurium encodes a LuxR homolog, SdiA, which detects N-acylhomoserine lactones (AHLs) produced by Y. enterocolitica and upregulates the expression of an invasin (Rck) and a putative T3SS effector (SrgE). Two different methods of constitutively activating the S. Typhimurium SdiA regulon failed to reverse the uptake blockade imposed by Y. enterocolitica.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Listeria monocytogenes/imunologia , Salmonella typhimurium/imunologia , Yersinia enterocolitica/imunologia , Análise de Variância , Sistemas de Secreção Bacterianos/imunologia , Sistemas de Secreção Bacterianos/fisiologia , Células CACO-2 , Células Cultivadas , Células HeLa , Humanos , Listeria monocytogenes/patogenicidade , Salmonella typhimurium/patogenicidade , Yersinia enterocolitica/patogenicidade
13.
Mol Microbiol ; 87(5): 1045-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23289537

RESUMO

To cause disease, Salmonella must invade the intestinal epithelium employing genes encoded within Salmonella Pathogenicity Island 1 (SPI1). We show here that propionate, a fatty acid abundant in the intestine of animals, repressed SPI1 at physiologically relevant concentration and pH, reducing expression of SPI1 transcriptional regulators and consequently decreasing expression and secretion of effector proteins, leading to reduced bacterial penetration of cultured epithelial cells. Essential to repression was hilD, which occupies the apex of the regulatory cascade within SPI1, as loss of only this gene among those of the regulon prevented repression of SPI1 transcription by propionate. Regulation through hilD, however, was achieved through the control of neither transcription nor translation. Instead, growth of Salmonella in propionate significantly reduced the stability of HilD. Extending protein half-life using a Lon protease mutant demonstrated that protein stability itself did not dictate the effects of propionate and suggested modification of HilD with subsequent degradation as the means of action. Furthermore, repression was significantly lessened in a mutant unable to produce propionyl-CoA, while further metabolism of propionyl-CoA appeared not to be required. These results suggest a mechanism of control of Salmonella virulence in which HilD is post-translationally modified using the high-energy intermediate propionyl-CoA.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação para Baixo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Propionatos/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Fatores de Transcrição/genética
14.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352409

RESUMO

With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance: Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.

15.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293109

RESUMO

Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.

16.
J Bacteriol ; 195(2): 173-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144246

RESUMO

Many Proteobacteria are capable of quorum sensing using N-acyl-homoserine lactone (acyl-HSL) signaling molecules that are synthesized by LuxI or LuxM homologs and detected by transcription factors of the LuxR family. Most quorum-sensing species have at least one LuxR and one LuxI homolog. However, members of the Escherichia, Salmonella, Klebsiella, and Enterobacter genera possess only a single LuxR homolog, SdiA, and no acyl-HSL synthase. The most obvious hypothesis is that these organisms are eavesdropping on acyl-HSL production within the complex microbial communities of the mammalian intestinal tract. However, there is currently no evidence of acyl-HSLs being produced within normal intestinal communities. A few intestinal pathogens, including Yersinia enterocolitica, do produce acyl-HSLs, and Salmonella can detect them during infection. Therefore, a more refined hypothesis is that SdiA orthologs are used for eavesdropping on other quorum-sensing pathogens in the host. However, the lack of acyl-HSL signaling among the normal intestinal residents is a surprising finding given the complexity of intestinal communities. In this review, we examine the evidence for and against the possibility of acyl-HSL signaling molecules in the mammalian intestine and discuss the possibility that related signaling molecules might be present and awaiting discovery.


Assuntos
Acil-Butirolactonas/metabolismo , Enterobacteriaceae/fisiologia , Intestinos/microbiologia , Animais , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Humanos , Transdução de Sinais
17.
Microbiol Spectr ; : e0460622, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809033

RESUMO

Nontyphoidal salmonellosis is one of the most significant foodborne diseases in the United States and globally. There are no vaccines available for human use to prevent this disease, and only broad-spectrum antibiotics are available to treat complicated cases of the disease. However, antibiotic resistance is on the rise and new therapeutics are needed. We previously identified the Salmonella fraB gene, that mutation of causes attenuation of fitness in the murine gastrointestinal tract. The FraB gene product is encoded in an operon responsible for the uptake and utilization of fructose-asparagine (F-Asn), an Amadori product found in several human foods. Mutations in fraB cause an accumulation of the FraB substrate, 6-phosphofructose-aspartate (6-P-F-Asp), which is toxic to Salmonella. The F-Asn catabolic pathway is found only in the nontyphoidal Salmonella serovars, a few Citrobacter and Klebsiella isolates, and a few species of Clostridium; it is not found in humans. Thus, targeting FraB with novel antimicrobials is expected to be Salmonella specific, leaving the normal microbiota largely intact and having no effect on the host. We performed high-throughput screening (HTS) to identify small-molecule inhibitors of FraB using growth-based assays comparing a wild-type Salmonella and a Δfra island mutant control. We screened 224,009 compounds in duplicate. After hit triage and validation, we found three compounds that inhibit Salmonella in an fra-dependent manner, with 50% inhibitory concentration (IC50) values ranging from 89 to 150 µM. Testing these compounds with recombinant FraB and synthetic 6-P-F-Asp confirmed that they are uncompetitive inhibitors of FraB with Ki' (inhibitor constant) values ranging from 26 to 116 µM. IMPORTANCE Nontyphoidal salmonellosis is a serious threat in the United States and globally. We have recently identified an enzyme, FraB, that when mutated renders Salmonella growth defective in vitro and unfit in mouse models of gastroenteritis. FraB is quite rare in bacteria and is not found in humans or other animals. Here, we have identified small-molecule inhibitors of FraB that inhibit the growth of Salmonella. These could provide the foundation for a therapeutic to reduce the duration and severity of Salmonella infections.

18.
Microbiome ; 11(1): 114, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210515

RESUMO

BACKGROUND: The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. RESULTS: Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains. CONCLUSIONS: This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/genética , Modelos Animais de Doenças , Camundongos Endogâmicos CBA , Inflamação , Bacteroidetes
19.
BMC Genomics ; 13: 212, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646920

RESUMO

BACKGROUND: The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains and thereby reveal differences not apparent at the gene sequence level. RESULTS: A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 isolate (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of transposon insertions or had very few. For three of these nine genes, part of the annotated gene lacked transposon integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498, STM14_2872, STM14_3360, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. CONCLUSIONS: Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene contributions to fitness among syntenic homologs. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Aptidão Genética , Salmonella typhi/genética , Salmonella typhimurium/genética , Genes Essenciais , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Seleção Genética , Sintenia
20.
Appl Environ Microbiol ; 78(15): 5424-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610437

RESUMO

In this study, we tested the hypothesis that the SdiA proteins of Escherichia coli and Salmonella enterica serovar Typhimurium respond to indole. While indole was found to have effects on gene expression and biofilm formation, these effects were not sdiA dependent. However, high concentrations of indole did inhibit N-acyl-l-homoserine lactone (AHL) sensing by SdiA. We conclude that SdiA does not respond to indole but indole can inhibit SdiA activity in E. coli and Salmonella.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Percepção de Quorum/fisiologia , Salmonella typhimurium/metabolismo , Transativadores/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Percepção de Quorum/genética , Transativadores/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA