Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6165-6173, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717317

RESUMO

Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.


Assuntos
Apoptose , Cobre , Espécies Reativas de Oxigênio , Rutênio , Cobre/química , Cobre/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Rutênio/química , Rutênio/farmacologia , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ligantes , Ferroptose/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Colloids Surf B Biointerfaces ; 234: 113738, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199189

RESUMO

Tumor recurrence and wound healing represent significant burdens for tumor patients after the surgical removal of melanomas. Wound dressings with wound healing and anticancer therapeutic abilities could help to solve these issues. Thus, a hybrid hydrogel made of polyvinyl alcohol (PVA) and polyethylene imine (PEI) was prepared by cross-linking imine bond and boronic acid bond. This hydrogel was loaded with ruthenium nanorods (Ru NRs) and glucose oxidase (GOx) and named as nanocomposite hydrogel (Ru/GOx@Hydrogel), exhibiting remarkable photothermal/photodynamic/starvation antitumor therapy and wound repair abilities. Ru NRs are bifunctional phototherapeutic agents that simultaneously exhibit intrinsic photothermal and photodynamic functions. Three-dimensional composite hydrogel loaded with GOx can also consume glucose in the presence of O2 during tumor starvation therapy. Near-infrared (NIR) light-triggered hyperthermia can not only promote the consumption of glucose, but also facilitate the ablation of residual cancer cells. The antitumor effect of the Ru/GOx@Hydrogel resulted in significant improvements, compared to those observed with either phototherapy or starvation therapy alone. Additionally, the postoperative wound was substantially healed after treatment with Ru/GOx@Hydrogel and NIR irradiation. Therefore, the Ru/GOx@Hydrogel can be used as a multi-stimulus-responsive nanoplatform that could facilitate on-demand controlled drug release, and be used as a promising postoperative adjuvant in combination therapy.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias , Rutênio , Humanos , Glucose Oxidase , Rutênio/farmacologia , Polietilenoimina , Álcool de Polivinil , Hidrogéis/química , Neoplasias/terapia , Glucose
3.
Adv Mater ; 36(13): e2308747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108600

RESUMO

Multienzyme-mimicking redox nanozymes capable of efficient reactive oxygen species (ROS) generation and cellular homeostasis disruption are highly pursued for cancer therapy. However, it still faces challenges from the complicate tumor microenvironment (TME) and high chance for tumor metastasis. Herein, well-dispersed PtMnIr nanozymes are designed with multiple enzymatic activities, including catalase (CAT), oxidase (OXD), superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx), which continuously produce ROS and deplete glutathione (GSH) concurrently in an "inner catalytic loop" way. With the help of electrodynamic stimulus, highly active "spark" species (Ir3+ and Mn3+) are significantly increased, resulting in an effective cascade enzymatic and electrodynamic therapy. Moreover, the cyclic generation of ROS can also facilitate ferroptosis and apoptosis in tumor cells, boosting synergistic therapy. Importantly, lung metastasis inhibition is found, which confirms efficient immunotherapy by the combined effect of immunogenic cell death (ICD) and Mn2+-induced cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway, contributing great potential in the treatment of malignant tumors.


Assuntos
Imunoterapia , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peroxidase , Peroxidases , Glutationa , Nucleotidiltransferases , Microambiente Tumoral , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA