Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nature ; 580(7804): 524-529, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322056

RESUMO

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.


Assuntos
Carcinogênese , Neoplasias Colorretais/patologia , Intestinos/patologia , Mesoderma/patologia , Células-Tronco Neoplásicas/patologia , Comunicação Parácrina , Nicho de Células-Tronco , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos Ly/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Análise de Célula Única , Proteínas de Sinalização YAP
2.
J Hepatol ; 80(1): 140-154, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741346

RESUMO

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatias Alcoólicas/metabolismo , Carcinoma Hepatocelular/patologia , Fosfolipídeos/metabolismo , Neoplasias Hepáticas/patologia , Fígado/patologia
3.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447786

RESUMO

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Assuntos
Lisofosfolipídeos , Neoplasias , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Neoplasias/metabolismo , Sítios de Ligação , Sítio Alostérico
4.
Respir Res ; 24(1): 279, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964265

RESUMO

BACKGROUND: Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS: Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS: We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS: Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/toxicidade , Neoplasias Pulmonares/metabolismo , Linfonodos/patologia , RNA Mensageiro/genética
5.
Arterioscler Thromb Vasc Biol ; 42(8): 1023-1036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708027

RESUMO

BACKGROUND: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS: We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS: A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS: We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.


Assuntos
Aterosclerose , Células Endoteliais , Diester Fosfórico Hidrolases , Animais , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Feminino , Lisofosfolipídeos , Masculino , Camundongos , Camundongos Knockout para ApoE , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Tamoxifeno
6.
J Immunol ; 206(3): 607-620, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443087

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by exuberant deposition of extracellular matrix components, leading to the deterioration of lung architecture and respiratory functions. Profibrotic mechanisms are controlled by multiple regulatory molecules, including MAPKs, in turn regulated by multiple phosphorylation cascades. MAP3K8 is an MAPK kinase kinase suggested to pleiotropically regulate multiple pathogenic pathways in the context of inflammation and cancer; however, a possible role in the pathogenesis of IPF has not been investigated. In this report, MAP3K8 mRNA levels were found decreased in the lungs of IPF patients and of mice upon bleomycin-induced pulmonary fibrosis. Ubiquitous genetic deletion of Map3k8 in mice exacerbated the modeled disease, whereas bone marrow transfer experiments indicated that although MAP3K8 regulatory functions are active in both hematopoietic and nonhematopoietic cells, Map3k8 in hematopoietic cells has a more dominant role. Macrophage-specific deletion of Map3k8 was further found to be sufficient for disease exacerbation thus confirming a major role for macrophages in pulmonary fibrotic responses and suggesting a main role for Map3k8 in the homeostasis of their effector functions in the lung. Map3k8 deficiency was further shown to be associated with decreased Cox-2 expression, followed by a decrease in PGE2 production in the lung; accordingly, exogenous administration of PGE2 reduced inflammation and reversed the exacerbated fibrotic profile of Map3k8 -/- mice. Therefore, MAP3K8 has a central role in the regulation of inflammatory responses and Cox-2-mediated PGE2 production in the lung, and the attenuation of its expression is integral to pulmonary fibrosis development.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fibrose Pulmonar/metabolismo , Animais , Transplante de Medula Óssea , Células Cultivadas , Fibrose , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176032

RESUMO

Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].


Assuntos
Neoplasias , Diester Fosfórico Hidrolases , Humanos , Lisofosfolipídeos , Desenvolvimento Embrionário
8.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958814

RESUMO

Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.


Assuntos
COVID-19 , Humanos , Estado Terminal , Galectina 3 , Hospitalização , Inflamação , Unidades de Terapia Intensiva , Estudos Retrospectivos , SARS-CoV-2
9.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806457

RESUMO

Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.


Assuntos
Lisofosfolipídeos , Insuficiência Renal Crônica , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Insuficiência Renal Crônica/metabolismo
10.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887265

RESUMO

The pathogenesis of sepsis involves complex interactions and a systemic inflammatory response leading eventually to multiorgan failure. Autotaxin (ATX, ENPP2) is a secreted glycoprotein largely responsible for the extracellular production of lysophosphatidic acid (LPA), which exerts multiple effects in almost all cell types through its at least six G-protein-coupled LPA receptors (LPARs). Here, we investigated a possible role of the ATX/LPA axis in sepsis in an animal model of endotoxemia as well as in septic patients. Mice with 50% reduced serum ATX levels showed improved survival upon lipopolysaccharide (LPS) stimulation compared to their littermate controls. Similarly, mice bearing the inducible inactivation of ATX and presenting with >70% decreased ATX levels were even more protected against LPS-induced endotoxemia; however, no significant effects were observed upon the chronic and systemic transgenic overexpression of ATX. Moreover, the genetic deletion of LPA receptors 1 and 2 did not significantly affect the severity of the modelled disease, suggesting that alternative receptors may mediate LPA effects upon sepsis. In translation, ATX levels were found to be elevated in the sera of critically ill patients with sepsis in comparison with their baseline levels upon ICU admission. Therefore, the results indicate a role for ATX in LPS-induced sepsis and suggest possible therapeutic benefits of pharmacologically targeting ATX in severe, systemic inflammatory disorders.


Assuntos
Endotoxemia , Receptores de Ácidos Lisofosfatídicos , Animais , Modelos Animais de Doenças , Inflamação , Lipopolissacarídeos/toxicidade , Lisofosfolipídeos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
11.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409077

RESUMO

Autotaxin (ATX), encoded by the ctonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) gene, is a key enzyme in lysophosphatidic acid (LPA) synthesis. We have recently described ENPP2 methylation profiles in health and multiple malignancies and demonstrated correlation to its aberrant expression. Here we focus on breast cancer (BrCa), analyzing in silico publicly available BrCa methylome datasets, to identify differentially methylated CpGs (DMCs) and correlate them with expression. Numerous DMCs were identified between BrCa and healthy breast tissues in the gene body and promoter-associated regions (PA). PA DMCs were upregulated in BrCa tissues in relation to normal, in metastatic BrCa in relation to primary, and in stage I BrCa in relation to normal, and this was correlated to decreased mRNA expression. The first exon DMC was also investigated in circulating cell free DNA (ccfDNA) isolated by BrCa patients; methylation was increased in BrCa in relation to ccfDNA from healthy individuals, confirming in silico results. It also differed between patient groups and was correlated to the presence of multiple metastatic sites. Our data indicate that promoter methylation of ENPP2 arrests its transcription in BrCa and introduce first exon methylation as a putative biomarker for diagnosis and monitoring which can be assessed in liquid biopsy.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Diester Fosfórico Hidrolases/metabolismo , Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Biópsia Líquida , Diester Fosfórico Hidrolases/genética
12.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769391

RESUMO

Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant expression has been reported, ENPP2 methylation profiles in health and malignancy are not described. We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions, whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple transcription factors, suggesting involvement in gene expression. Alterations in methylation were correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas, increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX expression regulation in cancer. Our study provides an extended description of the methylation status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Diester Fosfórico Hidrolases/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Neoplasias/genética , Prognóstico
13.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562347

RESUMO

. De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including machine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been employed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and highlights hot topics for further development.


Assuntos
Desenho de Fármacos , Aprendizado de Máquina , Redes Neurais de Computação , Preparações Farmacêuticas/química , Animais , Humanos
14.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576169

RESUMO

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.


Assuntos
COVID-19/diagnóstico , Células Dendríticas/imunologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/terapia , Estudos de Coortes , Conjuntos de Dados como Assunto , Células Dendríticas/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Humanos , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , RNA-Seq , Respiração Artificial , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise de Célula Única
15.
Bioorg Med Chem ; 28(2): 115216, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31864778

RESUMO

Autotaxin (ATX), a glycoprotein (~125 kDa) isolated as an autocrine motility factor from melanoma cells, belongs to a seven-membered family of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), and exhibits lysophospholipase D activity. ATX is responsible for the hydrolysis of lysophosphatidylcholine (LPC) to produce the bioactive lipid lysophosphatidic acid (LPA), which is upregulated in a variety of pathological inflammatory conditions, including fibrosis, cancer, liver toxicity and thrombosis. Given its role in human disease, the ATX-LPA axis is an interesting target for therapy, and the development of novel potent ATX inhibitors is of great importance. In the present work a novel class of ATX inhibitors, optically active derivatives of 2-pyrrolidinone and pyrrolidine heterocycles were synthesized. Some of them exhibited interesting in vitro activity, namely the hydroxamic acid 16 (IC50 700 nM) and the carboxylic acid 40b (IC50 800 nM), while the boronic acid derivatives 3k (IC50 50 nM), 3l (IC50 120 nM), 3 m (IC50 180 nM) and 21 (IC50 35 nM) were found to be potent inhibitors of ATX.


Assuntos
Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirrolidinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Diester Fosfórico Hidrolases/química , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977539

RESUMO

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.


Assuntos
Bases de Dados de Proteínas , Inibidores Enzimáticos/química , Diester Fosfórico Hidrolases/química , Bibliotecas de Moléculas Pequenas , Animais , Doença Crônica , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/enzimologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Relação Estrutura-Atividade
17.
Med Res Rev ; 39(3): 976-1013, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30462853

RESUMO

Several years after its isolation from melanoma cells, an increasing body of experimental evidence has established the involvement of Autotaxin (ATX) in the pathogenesis of several diseases. ATX, an extracellular enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) into the bioactive lipid lysophosphatidic acid (LPA), is overexpressed in a variety of human metastatic cancers and is strongly implicated in chronic inflammation and liver toxicity, fibrotic diseases, and thrombosis. Accordingly, the ATX-LPA signaling pathway is considered a tractable target for therapeutic intervention substantiated by the multitude of research campaigns that have been successful in identifying ATX inhibitors by both academia and industry. Furthermore, from a therapeutic standpoint, the entry and the so far promising results of the first ATX inhibitor in advanced clinical trials against idiopathic pulmonary fibrosis (IPF) lends support to the viability of this approach, bringing it to the forefront of drug discovery efforts. The present review article aims to provide a comprehensive overview of the most important series of ATX inhibitors developed so far. Special weight is lent to the design, structure activity relationship and mode of binding studies carried out, leading to the identification of advanced leads. The most significant in vitro and in vivo pharmacological results of these advanced leads are also summarized. Lastly, the development of the first ATX inhibitor entered in clinical trials accompanied by its phase 1 and 2a clinical trial data is disclosed.


Assuntos
Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Pesquisa Translacional Biomédica , Animais , Humanos , Diester Fosfórico Hidrolases/química
18.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L678-L689, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483681

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5) is a member of the dual-specificity family of protein tyrosine phosphatases that negatively regulates p38 MAPK and the JNK. MKP-5-deficient mice exhibit improved muscle repair and reduced fibrosis in an animal model of muscular dystrophy. Here, we asked whether the effects of MKP-5 on muscle fibrosis extend to other tissues. Using a bleomycin-induced model of pulmonary fibrosis, we found that MKP-5-deficient mice were protected from the development of lung fibrosis, expressed reduced levels of hydroxyproline and fibrogenic genes, and displayed marked polarization towards an M1-macrophage phenotype. We showed that the profibrogenic effects of the transforming growth factor-ß1 (TGF-ß1) were inhibited in MKP-5-deficient lung fibroblasts. MKP-5-deficient fibroblasts exhibited enhanced p38 MAPK activity, impaired Smad3 phosphorylation, increased Smad7 levels, and decreased expression of fibrogenic genes. Myofibroblast differentiation was attenuated in MKP-5-deficient fibroblasts. Finally, we found that MKP-5 expression was increased in idiopathic pulmonary fibrosis (IPF)-derived lung fibroblasts but not in whole IPF lungs. These data suggest that MKP-5 plays an essential role in promoting lung fibrosis. Our results couple MKP-5 with the TGF-ß1 signaling machinery and imply that MKP-5 inhibition may serve as a therapeutic target for human lung fibrosis.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Fibroblastos/patologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Fosfatases de Especificidade Dupla/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais
19.
J Autoimmun ; 104: 102327, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31471142

RESUMO

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Hepatopatias , Diester Fosfórico Hidrolases , Transdução de Sinais , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doença Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/patologia , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Pulm Pharmacol Ther ; 55: 17-24, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659895

RESUMO

BACKGROUND: Vitamin D (VitD) is a steroid hormone with cytoprotective and anti-inflammatory properties. Epidemiological studies have suggested a link between VitD deficiency and risk of development of chronic lung diseases. Its role in lung fibrosis is largely unknown. The aim of our study was to investigate the role of VitD in experimental and human lung fibrosis. METHODS: VitD (25-OH-D3, 2 µg/kg) was orally administered from day 3-day 13 following bleomycin-challenge, in 8-10 weeks-old C57/BL6 mice. Mouse Lung Fibroblasts (MLFs) were pre-treated with VitD (2 µM for 24 h) and then stimulated with TGFB1 (10 ng/ml). Serum samples from 93 patients with IPF and other forms of interstitial lung diseases (ILDs) were prospectively collected for VitD measurement. RESULTS: VitD administration prevented bleomycin-induced lung fibrosis, as assessed by reductions in hydroxyproline levels, mRNA levels of col1a1, col3a1 and a-SMA (1.4-, 3.1-, 2.25-, 2.5-fold, respectively) and Masson Trichrome staining compared to the untreated group and these changes were associated with restoration of the bleomycin-induced downregulation of vitamin D-receptor (Vdr) mRNA levels. Pre-treatment with VitD reduced the responsiveness of MLFs to pro-fibrotic stimuli, as indicated by significant decreases of col1a1, col3a1 and a-SMA (3.6-, 4.1- and 2.7-fold, respectively).These changes were associated with restoration of the TGFB1-induced downregulation of vitamin D-receptor (VDR) mRNA levels. VitD treatment deactivated TGFB1-induced Smad3 phosphorylation. Patients with IPF and other forms of ILDs displayed deficient VitD serum concentrations (mean VitD = 18.76 ±â€¯8.36 vs. 18.54 ±â€¯8.39 ng/ml, respectively, p = 0.9). VitD deficiency was correlated with baseline FVC%predicted (r = 0.47, p < 0.0001), DLCO%predicted (r = 0.6, p < 0.0001), GAP score (r = -0.4, p < 0.0001) and all-cause mortality in patients with IPF (HR: 3.7, p = 0.001). CONCLUSIONS: VitD could serve as a prognosticator and potential therapeutic target in patients with IPF. Further studies are sorely needed.


Assuntos
Calcifediol/administração & dosagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Deficiência de Vitamina D/complicações , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Animais , Bleomicina/toxicidade , Calcifediol/farmacologia , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Mensageiro , Receptores de Calcitriol/genética , Sobrevida , Deficiência de Vitamina D/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA