RESUMO
BACKGROUND: Respiratory syncytial virus (RSV) disease severity was thought to be a result of host immunopathology but alternatively may be driven by high-level viral replication. The relationships between RSV load, viral clearance dynamics, and disease severity have not been carefully evaluated. METHODS: Previously healthy RSV-infected children <2 years old were recruited. RSV load was measured in respiratory secretions by fresh quantitative culture over 3 hospital days. Measures of disease severity were hospital admission, duration of hospitalization, requirement for intensive care, and respiratory failure. RESULTS: Multivariate logistic regression models revealed independent predictors of increased duration of hospitalization: male sex, lower weight, and higher viral load on any day. Viral loads at day 3 were more significantly associated with requirement for intensive care and respiratory failure than were viral loads at earlier time points. Faster RSV clearance was independently associated with shorter hospitalization. DISCUSSION: These observations challenge the immunopathology-based pathogenesis paradigm. They also have major therapeutic implications, suggesting that application of antiviral agents early in the disease course, even at a time when viral replication is at its highest, might improve subsequent morbidity by significantly lowering viral load and direct viral cytopathic effects, and aborting the potential downstream immunopathology.
Assuntos
Infecções por Vírus Respiratório Sincicial/fisiopatologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , Carga Viral , Cuidados Críticos , Feminino , Hospitalização , Humanos , Lactente , Tempo de Internação , Modelos Logísticos , Masculino , Líquido da Lavagem Nasal/virologia , Estudos Prospectivos , Insuficiência Respiratória/etiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Índice de Gravidade de Doença , Fatores de TempoRESUMO
BACKGROUND: There is a wide range of severity of respiratory syncytial viral (RSV) disease in previously healthy infants. Host factors have been well demonstrated to contribute to disease severity differences. However the possibility of disease severity differences being produced by factors intrinsic to the virus itself has rarely been studied. METHODS: Low-passage isolates of RSV collected prospectively from infants with different degrees of RSV disease severity were evaluated in vitro, holding host factors constant, so as to assess whether isolates induced phenotypically different cytokine/chemokine concentrations in a human lung epithelial cell line. Sixty-seven RSV isolates from previously healthy infants (38 hospitalized for acute RSV infection (severe disease) and 29 never requiring hospitalization (mild disease)) were inoculated into A549, lung epithelial cells at precisely controlled, low multiplicity of infection to mimic natural infection. Cultures were evaluated at 48 hours, 60 hours, and 72 hours to evaluate area under the curve (AUC) cytokine/chemokine induction. RESULTS: Cells infected with isolates from severely ill infants produced higher mean concentrations of all cytokine/chemokines tested (IL-1α, IL-6, IL-8 and RANTES) at all-time points tested. RSV isolates collected from infants with severe disease induced significantly higher AUCIL-8 and AUCRANTES secretion in infected cultures than mild disease isolates (p=0.028 and p=0.019 respectively). IL-8 and RANTES concentrations were 4 times higher at 48 hours for these severely ill infant isolates. Additionally, 38 isolates were evaluated at all-time points for quantity of virus. RSV concentration significantly correlated with both IL-8 and RANTES at all-time points. Neither cytokine/chemokine concentrations nor RSV concentrations were associated with RSV subgroup. DISCUSSION: Infants' RSV disease severity differences may be due in part to intrinsic viral strain-specific characteristics.
RESUMO
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory infection of children. Understanding RSV pathogenesis and evaluating interventions requires quantitative RSV testing. Previous studies have used the plaque assay technique. Real-time reverse transcriptase PCR (RTrtPCR) offers possible greater sensitivity, stability after freeze/thaw, and lower cost, thus facilitating multicenter studies. We developed RTrtPCR assays based upon the RSV N and F genes. The N-gene assay detected greater RSV quantity and was further evaluated. Standard curves utilized both extractions from RSV culture supernatants of known quantity and cloned purified copies of the target DNA. In vitro, the ratio of RSV subgroup A (RSV-A) genome copies to PFU was 153:1. A total of 462 samples collected quantitatively from 259 children were analyzed in duplicate by RTrtPCR. Results were compared with those of RSV plaque assays performed on fresh aliquots from the same children. Duplicate RTrtPCR results were highly correlated (r2 = 0.9964). The mean viral load from nasal washes obtained on the first study day was 5.75 +/- standard error of the mean 0.09 log PFU equivalents (PFUe)/ml. Viral load by RTrtPCR correlated with plaque assay results (r2 = 0.158; P < 0.0001). Within individuals, upper and lower respiratory tract secretions contained similar viral concentrations. RSV-A-infected children had 1.17 log PFUe higher viral loads than did those with RSV-B (P < 0.0001). RSV quantification by RTrtPCR of the N gene is precise and has significant, though limited, correlation with quantitative culture. The utility of the RTrtPCR quantification technique for clinical studies would be solidified after its correlation with RSV disease severity is established.