Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Sleep Res ; 32(2): e13635, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35567349

RESUMO

In adults, recent evidence demonstrates that sleep and circadian physiology change across lunar phases, including findings that endogenous melatonin levels are lower near the full moon compared to the new moon. Here, we extend these results to early childhood by examining circalunar fluctuations in children's evening melatonin levels. We analysed extant data on young children's circadian rhythms (n = 46, aged 3.0-5.9 years, 59% female). After following a strict sleep schedule for 5-7 days, children completed an in-home, dim-light circadian assessment (<10 lux). Salivary melatonin was assessed at regular 20- to 30-min intervals until 1 h past each child's scheduled bedtime. Melatonin levels varied significantly across lunar phases, such that melatonin was lower in participants assessed near the full moon as compared to near the new moon. Significant differences were observed at 50 min (meanfull  = 2.5 pg/ml; meannew  = 5.4 pg/ml) and 10 min (meanfull  = 7.3 pg/ml; meannew  = 15.8 pg/ml) before children's scheduled bedtime, as well as at 20 min (meanfull  = 15.5 pg/ml; meannew  = 26.1 pg/ml) and 50 min (meanfull  = 19.9 pg/ml; meannew  = 34.3 pg/ml) after bedtime. To our knowledge, these are the first data demonstrating that melatonin secretion, a process regulated by the human circadian system, is sensitive to changes in lunar phase at an early age. Future research is needed to understand the mechanisms underlying this association (e.g., an endogenous circalunar rhythm) and its potential influence on children's sleep and circadian health.


Assuntos
Melatonina , Adulto , Humanos , Criança , Pré-Escolar , Feminino , Masculino , Melatonina/análise , Ritmo Circadiano/fisiologia , Sono/fisiologia , Luz
2.
J Pineal Res ; 72(2): e12780, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997782

RESUMO

Light at night in adults suppresses melatonin in a nonlinear intensity-dependent manner. In children, bright light of a single intensity before bedtime has a robust melatonin suppressing effect. To our knowledge, whether evening light of different intensities is related to melatonin suppression in young children is unknown. Healthy, good-sleeping children (n = 36; 3.0-4.9 years; 39% male) maintained a stable sleep schedule for 7 days followed by a 29.5-h in-home dim-light circadian assessment (~1.5 lux). On the final night of the protocol, children received a 1-h light exposure (randomized to one of 15 light levels, ranging 5-5000 lux, with ≥2 participants assigned to each light level) in the hour before habitual bedtime. Salivary melatonin was measured to calculate the magnitude of melatonin suppression during light exposure compared with baseline levels from the previous evening, as well as the degree of melatonin recovery 50 min after the end of light exposure. Melatonin levels were suppressed between 69.4% and 98.7% (M = 85.4 ± 7.2%) during light exposure across the full range of intensities examined. Overall, we did not observe a light intensity-dependent melatonin suppression response; however, children exposed to the lowest quartile of light intensities (5-40 lux) had an average melatonin suppression (77.5 ± 7.0%) which was significantly lower than that observed at each of the three higher quartiles of light intensities (86.4 ± 5.6%, 89.2 ± 6.3%, and 87.1 ± 5.0%, respectively). We further found that melatonin levels remained below 50% baseline for at least 50 min after the end of light exposure for the majority (62%) of participants, and recovery was not influenced by light intensity. These findings indicate that preschool-aged children are highly sensitive to light exposure in the hour before bedtime and suggest the lighting environment may play a crucial role in the development and the maintenance of behavioral sleep problems through impacts on the circadian timing system.


Assuntos
Relógios Circadianos , Melatonina , Adulto , Criança , Pré-Escolar , Ritmo Circadiano/fisiologia , Feminino , Humanos , Luz , Masculino , Sono/fisiologia
3.
J Sleep Res ; 23(4): 397-405, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24628737

RESUMO

Chronotype is a construct reflecting individual differences in diurnal preference. Although chronotype has been studied extensively in school-age children, adolescents and adults, data on young children are scarce. This study describes chronotype and its relationship to the timing of the circadian clock and sleep in 48 healthy children aged 30-36 months (33.4 ± 2.1 months; 24 males). Parents completed the Children's Chronotype Questionnaire (CCTQ) ~2 weeks before the start of the study. The CCTQ provides three measures of chronotype: midsleep time on free days, a multi-item morningness/eveningness score and a single item chronotype score. After 5 days of sleeping on their habitual schedule (assessed with actigraphy and sleep diaries), children participated in an in-home salivary dim light melatonin onset assessment. Average midsleep time on free days was 1:47 ± 0:35, and the average morningness/eveningness score was 26.8 ± 4.3. Most toddlers (58.4%) were rated as 'definitely a morning type' or 'rather morning than evening type', while none (0%) were rated as 'definitely evening type'. More morning types (midsleep time on free days and morningness/eveningness score, respectively) had earlier melatonin onset times (r = 0.45, r = 0.26), earlier habitual bedtimes (r = 0.78, r = 0.54), sleep onset times (r = 0.80, r = 0.52), sleep midpoint times (r = 0.90, r = 0.53) and wake times (r = 0.74, r = 0.34). Parent ratings using the single-item chronotype score were associated with melatonin onset (r = 0.32) and habitual bedtimes (r = 0.27), sleep onset times (r = 0.33) and sleep midpoint times (r = 0.27). Morningness may best characterize circadian preference in early childhood. Associations between chronotype and circadian physiology and sleep timing suggest adequate validity for the CCTQ in this age group. These findings have important implications for understanding the marked variability in sleep timing during the early years of life.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Individualidade , Sono/fisiologia , Actigrafia , Pré-Escolar , Feminino , Humanos , Masculino , Melatonina/metabolismo , Pais , Inquéritos e Questionários
4.
J Biol Rhythms ; 38(1): 77-86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36415902

RESUMO

Late sleep timing is prevalent in early childhood and a risk factor for poor behavioral and health outcomes. Sleep timing is influenced by the phase of the circadian clock, with later circadian timing linked to delayed sleep onset in young children. Light is the strongest zeitgeber of circadian timing and, in adults, evening light produces circadian phase delay in an intensity-dependent manner. The intensity-dependent circadian phase-shifting response to evening light in children, however, is currently unknown. In the present study, 33 healthy, good-sleeping children aged 3.0 to 4.9 years (M = 4.14 years, 39% male) completed a 10-day between-subjects protocol. Following 7 days of a stable sleep schedule, an in-home dim-light circadian assessment was performed. Children remained in dim-light across 3 days (55 h), with salivary melatonin collected in regular intervals throughout each evening. Phase-shifting effects of light exposure were determined via changes in the timing of the dim-light melatonin onset (DLMO) prior to (Day 8) and following (Day 10) a light exposure stimulus. On Day 9, children were exposed to a 1 h light stimulus in the hour before their habitual bedtime. Each child was randomly assigned to one intensity between 5 and 5000 lux (4.5-3276 melanopic EDI). Across light intensities, children showed significant circadian phase delays, with an average phase delay of 56.1 min (SD = 33.6 min), and large inter-individual variability. No relationship between light intensity and magnitude of the phase shift was observed. However, a greater percentage of melatonin suppression during the light exposure was associated with a greater phase delay (r = -0.73, p < 0.01). These findings demonstrate that some young children may be highly sensitive to light exposure in the hour before bedtime and suggest that the home lighting environment and its impact on circadian timing should be considered a possible contributor to behavioral sleep difficulties.


Assuntos
Relógios Circadianos , Melatonina , Transtornos do Sono do Ritmo Circadiano , Pré-Escolar , Feminino , Humanos , Masculino , Ritmo Circadiano/fisiologia , Sono/fisiologia
5.
Clin Transl Sci ; 16(9): 1526-1546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37533169

RESUMO

Translational science education and training (E&T) aims to prepare the translational workforce to accelerate progress along the translational pipeline toward solutions that improve human health. In 2020-2021, the National Center for Advancing Translational Sciences (NCATS) Education Branch conducted a scoping review of the E&T literature with this focus. The review used the methodological framework proposed by Arksey and O'Malley. PubMed, Education Resources Information Center (ERIC), and Embase were searched, and forward citations conducted. Screening of titles, abstracts, and full text identified 44 included articles. Data extraction facilitated analysis of E&T content, audiences, modalities, evaluations, and recommendations. The NCATS Translational Science Principles were used to identity described or recommended E&T content. Twenty-nine articles described a translational science E&T opportunity or its evaluation, and another 15 articles offered recommendations for translational science E&T. The most prevalent NCATS Translational Science Principles were boundary-crossing partnerships (77%) and cross-disciplinary team science (75%). Among publications describing E&T opportunities, the most reported modalities were experiential learning (64%) and courses (61%) and the most reported participants were graduate students (68%) and postdoctoral fellows (54%). About half of these articles (n = 15) reported an evaluation, covering a range of proximal to distal outcomes. Recommendations emphasized the value of translational science E&T across training and career stages and the use of varied modalities to reach diverse audiences. This review highlights strengths and opportunities for growth in translational science E&T. Enhancements to content, expansion of participants and modalities, and rigorous evaluations will contribute to building a highly qualified, diverse translational science workforce.


Assuntos
National Center for Advancing Translational Sciences (U.S.) , Ciência Translacional Biomédica , Estados Unidos , Humanos , Pessoal de Saúde/educação
6.
J Clin Transl Sci ; 7(1): e33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845315

RESUMO

The National Center for Advancing Translational Science (NCATS) seeks to improve upon the translational process to advance research and treatment across all diseases and conditions and bring these interventions to all who need them. Addressing the racial/ethnic health disparities and health inequities that persist in screening, diagnosis, treatment, and health outcomes (e.g., morbidity, mortality) is central to NCATS' mission to deliver more interventions to all people more quickly. Working toward this goal will require enhancing diversity, equity, inclusion, and accessibility (DEIA) in the translational workforce and in research conducted across the translational continuum, to support health equity. This paper discusses how aspects of DEIA are integral to the mission of translational science (TS). It describes recent NIH and NCATS efforts to advance DEIA in the TS workforce and in the research we support. Additionally, NCATS is developing approaches to apply a lens of DEIA in its activities and research - with relevance to the activities of the TS community - and will elucidate these approaches through related examples of NCATS-led, partnered, and supported activities, working toward the Center's goal of bringing more treatments to all people more quickly.

7.
Physiol Rep ; 6(5)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29504270

RESUMO

Although the light-induced melatonin suppression response is well characterized in adults, studies examining the dynamics of this effect in children are scarce. The purpose of this study was to quantify the magnitude of evening light-induced melatonin suppression in preschool-age children. Healthy children (n = 10; 7 females; 4.3 ± 1.1 years) participated in a 7-day protocol. On days 1-5, children followed a strict sleep schedule. On day 6, children entered a dim light environment (<15 lux) for 1-h before providing salivary samples every 20- to 30-min from the afternoon until 50-min after scheduled bedtime. On day 7, subjects remained in dim light conditions until 1-h before bedtime, at which time they were exposed to a bright light stimulus (~1000 lux) for 1-h and then re-entered dim light conditions. Saliva samples were obtained before, during, and after bright light exposure and were time anchored to samples taken the previous evening. We found robust melatonin suppression (87.6 ± 10.0%) in response to the bright light stimulus. Melatonin levels remained attenuated for 50-min after termination of the light stimulus (P < 0.008). Furthermore, melatonin levels did not return to 50% of those observed in the dim light condition 50-min after the light exposure for 7/10 children. Our findings demonstrate a robust light-induced melatonin suppression response in preschool-age children. These findings have implications for understanding the role of evening light exposure in the development of evening settling difficulties and may serve as experimental evidence to support recommendations regarding light exposure and sleep hygiene practices in early childhood.


Assuntos
Saúde da Criança/normas , Ritmo Circadiano , Luz/efeitos adversos , Fotoperíodo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Melatonina/metabolismo , Saliva/metabolismo , Sono
8.
Pediatrics ; 140(Suppl 2): S92-S96, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29093040

RESUMO

Given the pervasive use of screen-based media and the high prevalence of insufficient sleep among American youth and teenagers, this brief report summarizes the literature on electronic media and sleep and provides research recommendations. Recent systematic reviews of the literature reveal that the vast majority of studies find an adverse association between screen-based media consumption and sleep health, primarily via delayed bedtimes and reduced total sleep duration. The underlying mechanisms of these associations likely include the following: (1) time displacement (ie, time spent on screens replaces time spent sleeping and other activities); (2) psychological stimulation based on media content; and (3) the effects of light emitted from devices on circadian timing, sleep physiology, and alertness. Much of our current understanding of these processes, however, is limited by cross-sectional, observational, and self-reported data. Further experimental and observational research is needed to elucidate how the digital revolution is altering sleep and circadian rhythms across development (infancy to adulthood) as pathways to poor health, learning, and safety outcomes (eg, obesity, depression, risk-taking).


Assuntos
Desenvolvimento Infantil/fisiologia , Ritmo Circadiano/fisiologia , Computadores/estatística & dados numéricos , Internet/estatística & dados numéricos , Sono/fisiologia , Mídias Sociais/estatística & dados numéricos , Adolescente , Criança , Computadores/tendências , Estudos Transversais , Feminino , Humanos , Estudos Observacionais como Assunto/métodos , Mídias Sociais/tendências
9.
Neurobiol Sleep Circadian Rhythms ; 1(2): 27-31, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28042611

RESUMO

Light exposure and sleep timing are two factors that influence inter-individual variability in the timing of the human circadian clock. The aim of this study was to quantify the degree to which evening light exposure predicts variance in circadian timing over and above bedtime alone in preschool children. Participants were 21 children ages 4.5-5.0 years (4.7 ± 0.2 years; 9 females). Children followed their typical sleep schedules for 4 days during which time they wore a wrist actigraph to assess sleep timing and a pendant light meter to measure minute-by-minute illuminance levels in lux. On the 5th day, children participated in an in-home dim-light melatonin onset (DLMO) assessment. Light exposure in the 2 h before bedtime was averaged and aggregated across the 4 nights preceding the DLMO assessment. Mean DLMO and bedtime were 19:22 ± 01:04 and 20:07 ± 00:46, respectively. Average evening light exposure was 710.1 ± 1418.2 lux. Children with later bedtimes (lights-off time) had more delayed melatonin onset times (r=0.61, p=0.002). Evening light exposure was not independently associated with DLMO (r=0.32, p=0.08); however, a partial correlation between evening light exposure and DLMO when controlling for bedtime yielded a positive correlation (r=0.46, p=0.02). Bedtime explained 37.3% of the variance in the timing of DLMO, and evening light exposure accounted for an additional 13.3% of the variance. These findings represent an important step in understanding factors that influence circadian phase in preschool-age children and have implications for understanding a modifiable pathway that may underlie late sleep timing and the development of evening settling problems in early childhood.

10.
PLoS One ; 10(4): e0125181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915066

RESUMO

The timing of the internal circadian clock shows large inter-individual variability across the lifespan. Although the sleep-wakefulness pattern of most toddlers includes an afternoon nap, the association between napping and circadian phase in early childhood remains unexplored. This study examined differences in circadian phase and sleep between napping and non-napping toddlers. Data were collected on 20 toddlers (34.2±2.0 months; 12 females; 15 nappers). Children followed their habitual napping and non-napping sleep schedules (monitored with actigraphy) for 5 days before an in-home salivary dim light melatonin onset (DLMO) assessment. On average, napping children fell asleep during their nap opportunities on 3.6±1.2 of the 5 days before the DLMO assessment. For these napping children, melatonin onset time was 38 min later (p = 0.044; d = 0.93), actigraphically-estimated bedtime was 43 min later (p = 0.014; d = 1.24), sleep onset time was 59 min later (p = 0.006; d = 1.46), and sleep onset latency was 16 min longer (p = 0.030; d = 1.03) than those not napping. Midsleep and wake time did not differ by napping status. No difference was observed in the bedtime, sleep onset, or midsleep phase relationships with DLMO; however, the wake time phase difference was 47 min smaller for napping toddlers (p = 0.029; d = 1.23). On average, nappers had 69 min shorter nighttime sleep durations (p = 0.006; d = 1.47) and spent 49 min less time in bed (p = 0.019; d = 1.16) than non-nappers. Number of days napping was correlated with melatonin onset time (r = 0.49; p = 0.014). Our findings indicate that napping influences individual variability in melatonin onset time in early childhood. The delayed bedtimes of napping toddlers likely permits light exposure later in the evening, thereby delaying the timing of the clock and sleep. Whether the early developmental trajectory of circadian phase involves an advance associated with the decline in napping is a question necessitating longitudinal data as children transition from a biphasic to monophasic sleep-wakefulness pattern.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Melatonina/análise , Sono/fisiologia , Actigrafia/métodos , Pré-Escolar , Feminino , Humanos , Masculino , Saliva/química , Fatores de Tempo
11.
J Biol Rhythms ; 28(5): 322-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24132058

RESUMO

Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timing of the circadian clock, which has been used in experimental, clinical, and descriptive studies in the past few decades. Although DLMO and its relationship to sleep have been well documented in school-aged children, adolescents, and adults, very little is known about these processes in early childhood. The purpose of this study was 1) to describe circadian phase and phase angles of entrainment in toddlers and 2) to examine associations between DLMO and actigraphic measures of children's nighttime sleep. Participants were 45 healthy toddlers aged 30 to 36 months (33.5 ± 2.2 months; 21 females). After sleeping on a parent-selected schedule for 5 days (assessed with actigraphy and diaries), children participated in an in-home DLMO assessment involving the collection of saliva samples every 30 minutes for 6 hours. Average bedtime was 2015 ± 0036 h, average sleep onset time was 2043 ± 0043 h, average midsleep time was 0143 ± 0038 h, and average wake time was 0644 ± 0042 h. Average DLMO was 1929 ± 0051 h, with a 3.5-hour range. DLMO was normally distributed; however, the distribution of the bedtime, sleep onset time, and midsleep phase angles of entrainment were skewed. On average, DLMO occurred 47.8 ± 47.6 minutes (median = 39.4 minutes) before bedtime, 74.6 ± 48.0 minutes (median = 65.4 minutes) before sleep onset time, 6.2 ± 0.7 hours (median = 6.1 hours) before midsleep time, and 11.3 ± 0.7 hours before wake time. Toddlers with later DLMOs had later bedtimes (r = 0.46), sleep onset times (r = 0.51), midsleep times (r = 0.66), and wake times (r = 0.65) (all p < 0.001). Interindividual differences in toddlers' circadian phase are large and associated with their sleep timing. The early DLMOs of toddlers indicate a maturational delay in the circadian timing system between early childhood and adolescence. These findings are a first step in describing the fundamental properties of the circadian system in toddlers and have important implications for understanding the emergence of sleep problems and the consequences of circadian misalignment in early childhood.


Assuntos
Ritmo Circadiano , Sono , Actigrafia , Pré-Escolar , Feminino , Humanos , Masculino , Melatonina/análise , Saliva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA