Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 416, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995331

RESUMO

A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Plasmídeos , Poliploidia , Plasmídeos/genética , Edição de Genes/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces/genética , Saccharomyces cerevisiae/genética , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/metabolismo , Genoma Fúngico/genética
2.
Biosci Biotechnol Biochem ; 88(3): 231-236, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364793

RESUMO

Saccharomyces cerevisiae is one of the most important microorganisms for the food industry, including Japanese sake, beer, wine, bread, and other products. For sake making, Kyokai sake yeast strains are considered one of the best sake yeast strains because these strains possess fermentation properties that are suitable for the quality of sake required. In recent years, the momentum for the development of unique sake, which is distinct from conventional sake, has grown, and there is now a demand to develop unique sake yeasts that have different sake making properties than Kyokai sake yeast strains. In this minireview, we focus on "wild yeasts," which inhabit natural environments, and introduce basic research on the wild yeasts for sake making, such as their genetic and sake fermentation aspects. Finally, we also discuss the molecular breeding of wild yeast strains for sake fermentation and the possibility for sake making using wild yeasts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/análise , Proteínas de Saccharomyces cerevisiae/genética , Fermentação , Leveduras/genética , Leveduras/metabolismo
3.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33452026

RESUMO

Kimoto-style seed mash is a traditional preparation method for sake that takes advantage of spontaneous lactic acid fermentation before the growth of yeast. Lactic acid helps decrease the pH in seed mash and control the growth of unfavorable microorganisms. In this study, we carried out a comprehensive analysis of the change in the bacterial community and chemical composition during the lactic acid fermentation stage in kimoto-style seed mash preparation. The bacterial transitions were diverse at five sake breweries, but they exhibited three patterns. Lactobacillus sakei was the dominant species in the later stage of lactic acid fermentation in all sake breweries. This species was found to be the most important bacterium for the accumulation of lactic acid, because its average production rate of lactic acid in seed mash reached 4.44 × 10-11 mg cell-1 h-1, which is 10 times higher than those of other species. As a result of specific growth rate analysis, it was revealed that the growth rate of L. sakei was influenced by the strain, pH, and temperature. The effects of pH and temperature were explained by the square root model, and the result indicates that the strains isolated in this study were incapable of growth below pH 3.9. The growth curve predicted using the growth model fit the actual cell density in two out of five sake breweries; however, our model did not work well for the remaining three sake breweries, and we presume that the error was caused by the strain or an unknown factor.IMPORTANCE It is important to produce lactic acid in kimoto-style seed mash; however, the bacterial transition is different depending on the sake brewery. The reason why there are diverse bacterial transitions during kimoto-style seed mash preparation for each sake brewery is unclear so far, and it causes difficulty in starting kimoto-style seed mash. Our findings indicate that the changes in pH caused by lactic acid bacteria grown prior to L. sakei in seed mash influence the growth of L. sakei and are related to the diversity of the bacterial transition. This study uses comprehensive analytical methods to reveal that there is a diversity of bacterial transition and chemical compositions in kimoto-style seed mash depending on the sake brewery and to explain the differences in bacterial transition depending on the characteristics of L. sakei.


Assuntos
Bebidas Alcoólicas , Ácido Láctico/metabolismo , Latilactobacillus sakei/crescimento & desenvolvimento , Latilactobacillus sakei/metabolismo , Arginina/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
4.
Biosci Biotechnol Biochem ; 84(4): 842-853, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31868109

RESUMO

General sake yeasts (e.g., Kyokai no.7, K7) show high fermentation ability and low sporulation frequency. Former is related to stress-response defect due to the loss-of-function of MSN4 and RIM15. Later is mainly caused by low IME1 expression, leading to difficulty in breeding and genetic analysis. Sake yeast Hiroshima no.6 (H6), which had been applied for sake fermentation, has sporulation ability. However, its detailed properties have not been unveiled. Here we present that the fermentation ability of H6 is suitable for sake brewing, and the precursor of dimethyl trisulfide in sake from H6 is low. MSN4 but not RIM15 of H6 has the same mutation as K7. Our phylogenetic analysis indicated that H6 is closely related to the K7 group. Unlike K7, H6 showed normal sporulation frequency in a partially RIM15-dependent manner, and IME1 in H6 was expressed. H6 possesses excellent properties as a partner strain for breeding by crossing.


Assuntos
Bebidas Alcoólicas/microbiologia , Fermentação , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Cruzamentos Genéticos , Genes Fúngicos , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
5.
Biosci Biotechnol Biochem ; 84(5): 1073-1076, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31961264

RESUMO

To elucidate the mechanism underlying tetrahydrofolate (THF) accumulation in sake yeast strains compared with that in laboratory yeast strains, we performed a quantitative trait locus (QTL) analysis. The results revealed that the sake yeast ERC1 allele contributes to an increase in the ratio of THF to the total folate content in sake yeast.


Assuntos
Alelos , Vias Biossintéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolatos/metabolismo , Técnicas de Cultura de Células , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Haplótipos , Locos de Características Quantitativas , S-Adenosilmetionina/metabolismo
6.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341081

RESUMO

Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 (K7) and its relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall family protein kinase. Disruption of RIM15 in nonsake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene, encoding B55δ, abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggesting that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival.IMPORTANCE The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.


Assuntos
Proteínas de Ciclo Celular/genética , Etanol/metabolismo , Nutrientes/metabolismo , Proteínas Quinases/genética , Proteína Fosfatase 2/genética , Bombas de Próton/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Bebidas Alcoólicas/análise , Proteínas de Ciclo Celular/metabolismo , Fermentação , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biosci Biotechnol Biochem ; 83(8): 1463-1472, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30835624

RESUMO

Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article. Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation.


Assuntos
Bebidas Alcoólicas , Genoma Fúngico , Estudo de Associação Genômica Ampla , Genômica , Oryza , Saccharomyces cerevisiae/genética , Aneuploidia , Perfilação da Expressão Gênica , Ligação Genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
8.
Biosci Biotechnol Biochem ; 83(8): 1498-1505, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30355069

RESUMO

Yeast histone deacetylases (HDAC) affect the production of alcoholic beverages. In this study, we evaluated the sake fermentation characteristics when using HDAC gene-disrupted yeast strain Kyokai No. 701. Flavor components of the sake product were significantly changed. RPD3 or HDA1 disruption increased twofold the amount of isoamyl acetate, and isoamyl alcohol levels also increased in the rpd3Δ strain. To determine the contribution of Rpd3L and Rpd3S complexes to sake characteristics, a gene responsible for Rpd3L and/or Rpd3S formation was also disrupted. Disruption of DEP1 or SDS3 that is an essential component of Rpd3L led to increased isoamyl alcohol production similar to that of the rpd3Δ strain, but the efficiency of isoamyl alcohol esterification was not affected. In addition, Rpd3 and Hda1 may regulate the responsiveness to oxygen in isoamyl acetate production. We conclude that HDAC genes regulate the production of flavor components during sake fermentation. Abbreviations: HDAC: Histone deacetylase; HAT: histone acetyltransferase; K701: sake yeast Kyokai No. 701; PCR: polymerase chain reaction; HPLC: high performance liquid chromatography; E/A: Ester/Alcohol; BCAA: branched chain-amino acid; Atf: alcohol acetyltransferase.


Assuntos
Bebidas Alcoólicas , Fermentação , Histona Desacetilases/metabolismo , Oryza , Saccharomyces cerevisiae/enzimologia , Genes Fúngicos , Histona Desacetilases/genética , Oxigênio/metabolismo , Pentanóis/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biosci Biotechnol Biochem ; 83(8): 1583-1593, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31189439

RESUMO

Mutations frequently occur during breeding of sake yeasts and result in unexpected phenotypes. Here, genome editing tools were applied to develop an ideal nonfoam-forming sake yeast strain, K7GE01, which had homozygous awa1∆/awa1∆ deletion alleles that were responsible for nonfoam formation and few off-target mutations. High-dimensional morphological phenotyping revealed no detectable morphological differences between the genome-edited strain and its parent, while the canonical nonfoam-forming strain, K701, showed obvious morphological changes. Small-scale fermentation tests also showed differences between components of sake produced by K7GE01 and K701. The K7GE01 strain produced sake with significant differences in the concentrations of ethyl acetate, malic acid, lactic acid, and acetic acid, while K701 produced sake with more differences. Our results indicated genuine phenotypes of awa1∆/awa1∆ in sake yeast isolates and showed the usefulness of genome editing tools for sake yeast breeding.


Assuntos
Bebidas Alcoólicas , Edição de Genes , Genoma Fúngico , Saccharomyces cerevisiae/genética , Fermentação , Mutação
10.
Appl Environ Microbiol ; 83(24)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986374

RESUMO

The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile.IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms.


Assuntos
Bebidas Alcoólicas/microbiologia , Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Trissomia/genética , Fermentação
11.
Appl Environ Microbiol ; 82(1): 340-51, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497456

RESUMO

The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall ß-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-ß-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-ß-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of ß-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.


Assuntos
Vias Biossintéticas/genética , Fermentação , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/microbiologia , Vias Biossintéticas/fisiologia , Parede Celular , Regulação para Baixo , Etanol/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Proteínas Quinases/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Trealose/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Regulação para Cima , Uridina Difosfato Glucose/biossíntese , beta-Glucanas/metabolismo
12.
Biosci Biotechnol Biochem ; 80(8): 1657-62, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27191586

RESUMO

In high-quality sake brewing, the cerulenin-resistant sake yeast K1801 with high ethyl caproate-producing ability has been used widely; however, K1801 has a defective spindle assembly checkpoint (SAC). To identify the mutation causing this defect, we first searched for sake yeasts with a SAC-defect like K1801 and found that K13 had such a defect. Then, we searched for a common SNP in only K1801 and K13 by examining 15 checkpoint-related genes in 23 sake yeasts, and found 1 mutation, R48P of Cdc55, the PP2A regulatory B subunit that is important for the SAC. Furthermore, we confirmed that the Cdc55-R48P mutation was responsible for the SAC-defect in K1801 by molecular genetic analyses. Morphological analysis indicated that this mutation caused a high cell morphological variation. But this mutation did not affect the excellent brewing properties of K1801. Thus, this mutation is a target for breeding of a new risk-free K1801 with normal checkpoint integrity.


Assuntos
Bebidas Alcoólicas , Caproatos/metabolismo , Proteínas de Ciclo Celular/genética , Etanol/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mutação , Proteína Fosfatase 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Fermentação , Tecnologia de Alimentos , Expressão Gênica , Humanos , Japão , Odorantes , Oryza/química , Polimorfismo de Nucleotídeo Único , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
13.
Appl Environ Microbiol ; 81(1): 453-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362059

RESUMO

4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities.


Assuntos
Furanos/metabolismo , Deleção de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetaldeído/metabolismo , Álcool Desidrogenase/deficiência , Antioxidantes/metabolismo , Aromatizantes/metabolismo , Programas de Rastreamento , Proteínas de Saccharomyces cerevisiae
14.
Biosci Biotechnol Biochem ; 79(7): 1191-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25787154

RESUMO

In the brewing of high-quality sake such as Daiginjo-shu, the cerulenin-resistant sake yeast strains with high producing ability to the flavor component ethyl caproate have been used widely. Genetic stability of sake yeast would be important for the maintenance of both fermentation properties of yeast and quality of sake. In eukaryotes, checkpoint mechanisms ensure genetic stability. However, the integrity of these mechanisms in sake yeast has not been examined yet. Here, we investigated the checkpoint integrity of sake yeasts, and the results suggested that a currently used cerulenin-resistant sake yeast had a defect in spindle assembly checkpoint (SAC). We also isolated a spontaneous cerulenin-resistant sake yeast FAS2-G1250S mutant, G9CR, which showed both high ethyl caproate-producing ability and integrity/intactness of the checkpoint mechanisms. Further, morphological phenotypic robustness analysis by use of CalMorph supported the genetic stability of G9CR. Finally, we confirmed the high quality of sake from G9CR in an industrial sake brewing setting.


Assuntos
Bebidas Alcoólicas/microbiologia , Caproatos/metabolismo , Cerulenina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Benomilo/farmacologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Farmacorresistência Fúngica , Ácido Graxo Sintases/genética , Fermentação , Microbiologia de Alimentos/métodos , Mutação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biosci Bioeng ; 137(3): 195-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242756

RESUMO

The EHL1/2/3 genes were identified by whole-genome sequencing of Kyokai No. 7 (K7), which is a well-known representative Japanese sake yeast Saccharomyces cerevisiae. The genes are present in K7, but not in laboratory strain S288C. Although the genes were presumed to encode epoxide hydrolase based on homology analysis, their effect on cellular metabolism in sake yeast has not yet been clarified. We constructed ehl1/2/3 mutants harboring a stop codon in each gene using the haploid yeast strain H3 as the parental strain, which was derived from K701, and investigated the physiological role and effects of the EHL1/2/3 genes on sake quality. Metabolome analysis and vitamin requirement testing revealed that the EHL1/2/3 genes are partly responsible for the synthesis of pantothenate. For fermentation profiles, ethanol production by the ehl1/2/3 mutant was comparable with that of strain H3, but succinate production was decreased in the ehl1/2/3 mutant compared to strain H3 when cultured in yeast malt (YM) medium containing 10% glucose and during sake brewing. Ethyl hexanoate and isoamyl acetate levels in the ehl1/2/3 mutant strain were decreased compared to those of strain H3 during sake brewing. Thus, the EHL1/2/3 genes did not affect ethanol production but did affect the production of organic acids and aromatic components during sake brewing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Bebidas Alcoólicas , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Etanol
16.
J Biosci Bioeng ; 137(4): 268-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310037

RESUMO

Hineka is a type of off-flavor of sake and is attributed to the presence of several compounds, including a major one called dimethyl trisulfide (DMTS). The production of the main precursor of DMTS involves yeast methionine salvage pathway. The DMTS-producing potential (DMTS-pp) of sake brewed using the Km67 strain, a non-Kyokai sake yeast, is lower than that of sake brewed using Kyokai yeast; however, the detailed mechanism is unclear. We focused on S-adenosyl-methionine (SAM) and aimed to elucidate the mechanism that prevents DMTS production in sake brewed using the Km67 strain. We revealed that SAM is involved in DMTS production in sake, and that the conversion of SAM to the DMTS precursor occurs through an enzymatic reaction rather than a chemical reaction. Based on previous reports on ADO1 and MDE1 genes, sake brewing tests were performed using the Km67 Δmde1, Δado1, and Δmde1Δado1 strains. A comparison of the SAM content of pressed sake cakes and DMTS-pp of sake produced using the Km67 Δado1 strain showed an increase in both SAM content and DMTS-pp compared to those produced using the parent strain. However, the Km67 Δmde1Δado1 strain showed little increase in DMTS-pp compared to the Km67 Δmde1 strain, despite an increase in SAM content. These results suggest that SAM accumulation in yeast plays a role in the production of DMTS in sake through the methionine salvage pathway. Moreover, the low SAM-accumulation characteristic of the Km67 strain contributes to low DMTS production in sake.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sulfetos , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/análise , Proteínas de Saccharomyces cerevisiae/genética , Odorantes/análise , Fermentação , S-Adenosilmetionina/metabolismo
17.
Biosci Biotechnol Biochem ; 77(11): 2255-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24200791

RESUMO

Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.


Assuntos
Proteínas de Ligação a DNA/genética , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA/deficiência , Fermentação , Deleção de Genes , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas , Saccharomyces cerevisiae/metabolismo , Transativadores/deficiência , Fatores de Transcrição/deficiência
18.
J Biosci Bioeng ; 136(1): 44-50, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183145

RESUMO

Biotin is an essential coenzyme that is bound to carboxylases and participates in fatty acid synthesis. The fact that sake yeast exhibit biotin prototrophy while almost all other Saccharomyces cerevisiae strains exhibit biotin auxotrophy, implies that biotin prototrophy is an important factor in sake brewing. In this study, we inserted a stop codon into the biotin biosynthetic BIO3 gene (cording for 7,8-diamino-pelargonic acid aminotransferase) of a haploid sake yeast strain using the marker-removable plasmid pAUR135 and investigated the fermentation profile of the resulting bio3 mutant. Ethanol production was not altered when the bio3 mutant was cultured in Yeast Malt (YM) medium containing 10% glucose at 15 °C and 30 °C. Interestingly, ethanol production was also not changed during the sake brewing process. On the other hand, the levels of organic acids in the bio3 mutant were altered after culturing in YM medium and during sake brewing. In addition, ethyl hexanoate and isoamyl acetate levels decreased in the bio3 mutant during sake brewing. Metabolome analysis revealed that the decreased levels of fatty acids in the bio3 mutant were attributed to the decreased levels of ethyl hexanoate. Further, the transcription level of genes related to the synthesis of ethyl hexanoate and isoamyl acetate were significantly reduced. The findings indicated that although the decrease in biotin biosynthesis did not affect ethanol production, it did affect the synthesis of components such as organic acids and aromatic compounds. Biotin biosynthesis ability is thus a key factor in sake brewing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Bebidas Alcoólicas/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ésteres/metabolismo , Biotina/metabolismo , Fermentação , Mutação
19.
Microorganisms ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37317248

RESUMO

Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.

20.
Appl Environ Microbiol ; 78(2): 385-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22057870

RESUMO

Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Etanol/toxicidade , Proteínas de Choque Térmico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Fusão Gênica Artificial , Deleção de Genes , Genes Reporter , Fosfoproteínas Fosfatases/genética , Fosforilação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA