Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 612(7940): 564-572, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477537

RESUMO

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Assuntos
Variação Estrutural do Genoma , Neoplasias , Proteínas Oncogênicas , Oncogenes , Humanos , Cromatina/genética , Rearranjo Gênico/genética , Variação Estrutural do Genoma/genética , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Cromossomos Humanos/genética , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Modelos Genéticos
2.
Mol Cell ; 64(5): 967-981, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912097

RESUMO

Recent evidence suggests that lncRNAs play an integral regulatory role in numerous functions, including determination of cellular identity. We determined global expression (RNA-seq) and genome-wide profiles (ChIP-seq) of histone post-translational modifications and p53 binding in human embryonic stem cells (hESCs) undergoing differentiation to define a high-confidence set of 40 lncRNAs, which are p53 transcriptional targets. We focused on lncRNAs highly expressed in pluripotent hESCs and repressed by p53 during differentiation to identify lncPRESS1 as a p53-regulated transcript that maintains hESC pluripotency in concert with core pluripotency factors. RNA-seq of hESCs depleted of lncPRESS1 revealed that lncPRESS1 controls a gene network that promotes pluripotency. Further, we found that lncPRESS1 physically interacts with SIRT6 and prevents SIRT6 chromatin localization, which maintains high levels of histone H3K56 and H3K9 acetylation at promoters of pluripotency genes. In summary, we describe a p53-regulated, pluripotency-specific lncRNA that safeguards the hESC state by disrupting SIRT6 activity.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Histonas/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Histona Desacetilases , Histonas/genética , Humanos , Células-Tronco Pluripotentes/citologia , Processamento de Proteína Pós-Traducional/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/genética
3.
Nucleic Acids Res ; 49(9): 5084-5094, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877329

RESUMO

DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPß binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPß binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.


Assuntos
Pareamento Incorreto de Bases , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/química , Citosina/química , DNA/química , DNA/metabolismo , Reparo do DNA , Guanina/química , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Timina/química
4.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
5.
Proc Natl Acad Sci U S A ; 113(9): E1296-305, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884185

RESUMO

PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Melanoma Experimental/metabolismo , Mutação , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Melanoma Experimental/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Nature ; 468(7326): 927-32, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164480

RESUMO

Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Acetilação , Neoplasias da Mama/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Histonas/química , Humanos , Metilação , Análise Serial de Proteínas , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Taxa de Sobrevida
7.
Nucleic Acids Res ; 42(1): 205-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078252

RESUMO

How tumor suppressor p53 selectively responds to specific signals, especially in normal cells, is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation, induced by retinoic acid, versus DNA damage, caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and, in pluripotent hESCs, are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases, UTX and JMJD3, to chromatin. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation, a process highly distinct from stress-induced p53 response in hESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Dano ao DNA , Células-Tronco Embrionárias/citologia , Genoma Humano , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Fatores de Transcrição/metabolismo
8.
Clin Cancer Res ; 29(23): 4844-4852, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747813

RESUMO

PURPOSE: Chondrosarcomas are the most common primary bone tumor in adults. Isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are prevalent. We aimed to assess the clinico-genomic properties of IDH mutant versus IDH wild-type (WT) chondrosarcomas as well as alterations in other genes. EXPERIMENTAL DESIGN: We included 93 patients with conventional and dedifferentiated chondrosarcoma for which there were available clinical next-generation sequencing data. Clinical and genomic data were extracted and compared between IDH mutant and IDH WT chondrosarcomas and between TP53 mutant and TP53 WT chondrosarcomas. RESULTS: IDH1 and IDH2 mutations are prevalent in chondrosarcoma (50.5%), more common in chondrosarcomas arising in the extremities, associated with higher age at diagnosis, and more common in dedifferentiated chondrosarcomas compared with grades 1-3 conventional chondrosarcoma. There was no difference in survival based on IDH mutation in univariate and multivariate analyses. TP53 mutation was the next most prevalent (41.9%) and is associated with worse overall survival and metastasis-free survival in both univariate and multivariate analyses. TP53 mutation was also associated with higher risk of recurrence following curative-intent surgery and worse survival among patients that presented with de novo metastatic disease. CONCLUSIONS: IDH mutations are prevalent in chondrosarcoma though were not associated with survival outcomes in this cohort. TP53 mutations were the next most common alteration and were associated with worse outcomes.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Adulto , Humanos , Mutação , Condrossarcoma/genética , Condrossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Genômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/genética
9.
NPJ Precis Oncol ; 6(1): 89, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456685

RESUMO

Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic hypermutation and class-switch recombination in immunoglobulins. In addition, this deaminase belonging to the APOBEC family may have off-target effects genome-wide, but its effects at pan-cancer level are not well elucidated. Here, we used different pan-cancer datasets, totaling more than 50,000 samples analyzed by whole-genome, whole-exome, or targeted sequencing. AID mutations are present at pan-cancer level with higher frequency in hematological cancers and higher presence at transcriptionally active TAD domains. AID synergizes initial hotspot mutations by a second composite mutation. AID mutational load was found to be independently associated with a favorable outcome in immune-checkpoint inhibitors (ICI) treated patients across cancers after analyzing 2000 samples. Finally, we found that AID-related neoepitopes, resulting from mutations at more frequent hotspots if compared to other mutational signatures, enhance CXCL13/CCR5 expression, immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.

10.
J Immunother ; 45(8): 374-378, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943386

RESUMO

The aim of this study is to evaluate the outcomes and tolerance of immune checkpoint inhibitors (ICIs) for patients with recurrent chordoma. We reviewed the records of 17 patients with recurrent chordomas who received ICIs for progressing disease as part of their treatment between 2016 and 2020. Response was assessed using response evaluation criteria in solid tumors 1.1 criteria. The Kaplan-Meier method was used to estimate the duration of response, progression-free survival (PFS), and overall survival (OS). Clinical benefit was defined as having stable disease (SD), a partial response, or a complete response. The median follow-up from the start of ICIs was 29 months [interquartile range (IQR): 13-35 m]. The majority received pembrolizumab (n=9, 53%), and the median number of cycles delivered was 8 (IQR: 7-12). The 1-year OS was 87%, and the 1-year PFS was 56% with a median PFS of 14 months (95% CI, 5-17 mo). After ICI initiation, most patients (n=15, 88%) had clinical benefit consisting of a complete response (n=1, 6%), partial response (n=3, 18%), and stable disease (n=11, 65%). Among all responders (n=15), the median duration of response was 12 months. Toxicities were limited: 2 (12%) patients having grade 3/4 immune-related toxicities (colitis, grade 3; myocarditis, grade 4). We observed a high rate of clinical benefit and favorable durability from ICI use for patients with recurrent chordoma. These data provide support for the integration of ICIs as a standard first-line systemic therapy option for patients with recurrent chordoma. Prospective studies are warranted to further evaluate efficacy and enhance response rates.


Assuntos
Antineoplásicos Imunológicos , Cordoma , Antineoplásicos Imunológicos/efeitos adversos , Cordoma/induzido quimicamente , Cordoma/diagnóstico , Cordoma/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia , Recidiva Local de Neoplasia , Estudos Retrospectivos
11.
Hepatology ; 52(3): 1023-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20564353

RESUMO

UNLABELLED: The p53 family of proteins regulates the expression of target genes that promote cell cycle arrest and apoptosis, which may be linked to cellular growth control as well as tumor suppression. Within the p53 family, p53 and the transactivating p73 isoform (TA-p73) have hepatic-specific functions in development and tumor suppression. Here, we determined TA-p73 interactions with chromatin in the adult mouse liver and found forkhead box O3 (Foxo3) to be one of 158 gene targets. Global profiling of hepatic gene expression in the regenerating liver versus the quiescent liver revealed specific, functional categories of genes regulated over the time of regeneration. Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative cellular proliferation. p53 and TA-p73 bind a Foxo3 p53 response element (p53RE) and maintain active expression in the quiescent liver. During regeneration of the liver, the binding of p53 and TA-p73, the recruitment of acetyltransferase p300, and the active chromatin structure of Foxo3 are disrupted along with a loss of Foxo3 expression. In agreement with the loss of Foxo3 transcriptional activation, a decrease in histone activation marks (dimethylated histone H3 at lysine 4, acetylated histone H3 at lysine 14, and acetylated H4) at the Foxo3 p53RE was detected after partial hepatectomy in mice. These parameters of Foxo3 regulation are reestablished with the completion of liver growth and regeneration and support a temporary suspension of p53 and TA-p73 regulatory functions in normal cells during tissue regeneration. p53-dependent and TA-p73-dependent activation of Foxo3 was also observed in mouse embryonic fibroblasts and in mouse hepatoma cells overexpressing p53, TA-p73alpha, and TA-p73beta isoforms. CONCLUSION: p53 and p73 directly bind and activate the expression of the Foxo3 gene in the adult mouse liver and murine cell lines. p53, TA-p73, and p300 binding and Foxo3 expression decrease during liver regeneration, and this suggests a critical growth control mechanism mediated by these transcription factors in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regeneração Hepática/fisiologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Forkhead Box O3 , Hepatectomia , Histonas/metabolismo , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores de Transcrição de p300-CBP/metabolismo
12.
Nat Genet ; 52(3): 294-305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024999

RESUMO

Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.


Assuntos
Cromatina/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Variação Estrutural do Genoma , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos
13.
Nat Genet ; 52(11): 1178-1188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020667

RESUMO

Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for developing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor-normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measurements. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers.


Assuntos
Cromatina/química , Genoma Humano , Mutação , Neoplasias/genética , Linhagem Celular Tumoral , Cromossomos Humanos X/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , DNA de Neoplasias , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Inativação do Cromossomo X
15.
Nat Genet ; 49(3): 349-357, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135248

RESUMO

Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Telomeres were shorter in tumors than in normal tissues and longer in sarcomas and gliomas than in other cancers. Among 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications and transcript fusions and predictive of telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, characterized by undetectable TERT expression and alterations in ATRX or DAXX, demonstrated elongated telomeres and increased telomeric repeat-containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT nor harbored alterations in ATRX or DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.


Assuntos
Neoplasias/genética , Mutação Puntual/genética , Telômero/genética , Metilação de DNA/genética , Glioma/genética , Humanos , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a Retinoblastoma/genética , Sarcoma/genética , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
16.
Cell Rep ; 19(4): 875-889, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445736

RESUMO

The extent and nature of epigenomic changes associated with melanoma progression is poorly understood. Through systematic epigenomic profiling of 35 epigenetic modifications and transcriptomic analysis, we define chromatin state changes associated with melanomagenesis by using a cell phenotypic model of non-tumorigenic and tumorigenic states. Computation of specific chromatin state transitions showed loss of histone acetylations and H3K4me2/3 on regulatory regions proximal to specific cancer-regulatory genes in important melanoma-driving cell signaling pathways. Importantly, such acetylation changes were also observed between benign nevi and malignant melanoma human tissues. Intriguingly, only a small fraction of chromatin state transitions correlated with expected changes in gene expression patterns. Restoration of acetylation levels on deacetylated loci by histone deacetylase (HDAC) inhibitors selectively blocked excessive proliferation in tumorigenic cells and human melanoma cells, suggesting functional roles of observed chromatin state transitions in driving hyperproliferative phenotype. Through these results, we define functionally relevant chromatin states associated with melanoma progression.


Assuntos
Cromatina/metabolismo , Epigenômica , Histonas/metabolismo , Acetilação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Intervalo Livre de Doença , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Estimativa de Kaplan-Meier , Melanoma/metabolismo , Melanoma/mortalidade , Melanoma/patologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Análise de Componente Principal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vorinostat
17.
J Clin Invest ; 125(8): 2965-78, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26193637

RESUMO

Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPß, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.


Assuntos
Biomarcadores Tumorais/metabolismo , Desdiferenciação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Lipossarcoma/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Adipócitos/metabolismo , Adipócitos/patologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Feminino , Histonas/genética , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Lipossarcoma/genética , Lipossarcoma/patologia , Masculino , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/genética
18.
Cancer Discov ; 5(12): 1314-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26450788

RESUMO

UNLABELLED: Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to monoubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFß signaling. In contrast, RNF2's oncogenic activity does not require its catalytic activity nor does it derive from its canonical gene repression function. Instead, RNF2 drives proliferation through direct transcriptional upregulation of the cell-cycle regulator CCND2. We further show that MEK1-mediated phosphorylation of RNF2 promotes recruitment of activating histone modifiers UTX and p300 to a subset of poised promoters, which activates gene expression. In summary, RNF2 regulates distinct biologic processes in the genesis and progression of melanoma via different molecular mechanisms. SIGNIFICANCE: The role of epigenetic regulators in cancer progression is being increasingly appreciated. We show novel roles for RNF2 in melanoma tumorigenesis and metastasis, albeit via different mechanisms. Our findings support the notion that epigenetic regulators, such as RNF2, directly and functionally control powerful gene networks that are vital in multiple cancer processes.


Assuntos
Melanoma/genética , Melanoma/patologia , Complexo Repressor Polycomb 1/genética , Animais , Catálise , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclina D2/genética , Ciclina D2/metabolismo , Progressão da Doença , Proteína p300 Associada a E1A/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Camundongos , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Oncogenes , Fosforilação , Complexo Repressor Polycomb 1/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta/metabolismo
19.
J Bone Miner Res ; 27(12): 2511-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22777888

RESUMO

Sox9 is an essential transcription factor for the differentiation of the chondrocytic lineage during embryonic development. To test whether Sox9 continues to play a critical role in cartilaginous tissues in the adult mice, we used an inducible, genetic strategy to disrupt the Sox9 gene postnatally in these tissues. The postnatal inactivation of Sox9 led to stunted growth characterized by decreased proliferation, increased cell death, and dedifferentiation of growth plate chondrocytes. Upon postnatal Sox9 inactivation in the articular cartilage, the sulfated proteoglycan and aggrecan content of the uncalcified cartilage were rapidly depleted and the degradation of aggrecan was accompanied by higher ADAMTS5 immunostaining and increased detection of the aggrecan neoepitope, NITEGE. In spite of the severe loss of Collagen 2a1 mRNA, the Collagen II protein persisted in the articular cartilage, and no histopathological signs of osteoarthritis were observed. The homeostasis of the intervertebral disk (IVD) was dramatically altered upon Sox9 depletion, resulting in disk compression and subsequent degeneration. Inactivation of Sox9 in the IVD markedly reduced the expression of several genes encoding extracellular matrix proteins, as well as some of the enzymes responsible for their posttranslational modification. Furthermore, the loss of Sox9 in the IVD decreased the expression of cytokines, cell-surface receptors, and ion channels, suggesting that Sox9 coordinates a large genetic program that is instrumental for the proper homeostasis of the cells contained in the IVD postnatally. Our results indicate that Sox9 has an essential role in the physiological control of cartilaginous tissues in adult mice. © 2012 American Society for Bone and Mineral Research.


Assuntos
Cartilagem Articular/metabolismo , Fatores de Transcrição SOX9/fisiologia , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Colágeno Tipo II/metabolismo , Lâmina de Crescimento/metabolismo , Disco Intervertebral/efeitos dos fármacos , Masculino , Camundongos , Fenótipo , Transcriptoma
20.
PLoS One ; 5(5): e10720, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20502665

RESUMO

Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and approximately 40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism.


Assuntos
Bovinos/genética , Etiquetas de Sequências Expressas , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Análise por Conglomerados , DNA Complementar/genética , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Fases de Leitura Aberta/genética , Ratos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA