RESUMO
A search for the narrow structure, X(5568), reported by the D0 Collaboration in the decay sequence XâB_{s}^{0}π^{±}, B_{s}^{0}âJ/ψÏ, is presented. The analysis is based on a data sample recorded with the ATLAS detector at the LHC corresponding to 4.9 fb^{-1} of pp collisions at 7 TeV and 19.5 fb^{-1} at 8 TeV. No significant signal was found. Upper limits on the number of signal events, with properties corresponding to those reported by D0, and on the X production rate relative to B_{s}^{0} mesons, ρ_{X}, were determined at 95% confidence level. The results are N(X)<382 and ρ_{X}<0.015 for B_{s}^{0} mesons with transverse momenta above 10 GeV, and N(X)<356 and ρ_{X}<0.016 for transverse momenta above 15 GeV. Limits are also set for potential B_{s}^{0}π^{±} resonances in the mass range 5550 to 5700 MeV.
RESUMO
Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log_{10}ρ^{2}, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb^{-1} of sqrt[s]=13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
RESUMO
A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb^{-1} collected with the ATLAS detector in pp collisions at sqrt[s]=13 TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the pp collision data at sqrt[s]=7 TeV and sqrt[s]=8 TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.
RESUMO
A search for heavy pseudoscalar (A) and scalar (H) Higgs bosons decaying into a top quark pair (tt[over ¯]) has been performed with 20.3 fb^{-1} of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy sqrt[s]=8 TeV. Interference effects between the signal process and standard model tt[over ¯] production, which are expected to distort the signal shape from a single peak to a peak-dip structure, are taken into account. No significant deviation from the standard model prediction is observed in the tt[over ¯] invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass m_{A/H} and the ratio of the vacuum expectation values of the two Higgs fields, tanß, for m_{A/H}>500 GeV.
RESUMO
Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a bb[over ¯] pair with the ATLAS detector using 36.1 fb^{-1} of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.
RESUMO
A search for the decays of the Higgs and Z bosons to a Ï meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb^{-1} collected at sqrt[s]=13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to Ïγ of 1.4×10^{-3} and 8.3×10^{-6}, respectively, are obtained.
RESUMO
This Letter presents a measurement of the inelastic proton-proton cross section using 60 µb^{-1} of pp collisions at a center-of-mass energy sqrt[s] of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07<|η|<3.86) of the detector. A cross section of 68.1±1.4 mb is measured in the fiducial region ξ=M_{X}^{2}/s>10^{-6}, where M_{X} is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M_{X}>13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.
RESUMO
The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb^{-1} of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7_{-2.0}^{+2.2}(stat)+0.9/-0.7(syst)+1.0/-0.7(lumi) pb. The results agree with standard model predictions.
RESUMO
ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, ΔÏ, and pseudorapidity, Δη, in sqrt[s]=13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval |η|<2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at ΔÏâ¼0 that extends over a wide range of Δη, which has been referred to as the "ridge." Per-trigger-particle yields, Y(ΔÏ), are measured over 2<|Δη|<5. For both collision energies, the Y(ΔÏ) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by cos(2ΔÏ). The fitted Fourier coefficient, v_{2,2}, exhibits factorization, suggesting that the ridge results from per-event cos(2Ï) modulation of the single-particle distribution with Fourier coefficients v_{2}. The v_{2} values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p_{T} dependence similar to that measured in p+Pb and Pb+Pb collisions. The v_{2} values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p+Pb collisions, and that the dynamics responsible for the ridge has no strong sqrt[s] dependence.
RESUMO
Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb^{-1} of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of sqrt[s]=8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured Hâγγ and HâZZ^{*}â4â event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σ_{ppâH}=33.0±5.3 (stat)±1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.
RESUMO
Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton-proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb^{-1} have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected standard model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the standard model featuring dark-matter candidates.
RESUMO
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of sqrt[s]=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb^{-1}. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
RESUMO
The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb^{-1} of pp collisions at sqrt[s]=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
RESUMO
A search for a charged Higgs boson, H(±), decaying to a W(±) boson and a Z boson is presented. The search is based on 20.3 fb(-1) of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H(±) boson is assumed to be produced via vector-boson fusion and the decays W(±)âqq' and Zâe(+)e(-)/µ(+)µ(-) are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H(±) boson is observed. Upper limits of 31-1020 fb at 95% C.L. are placed on the cross section for vector-boson fusion production of an H(±) boson times its branching fraction to W(±)Z. The limits are compared with predictions from the Georgi-Machacek Higgs triplet model.
RESUMO
This Letter presents a search for a heavy neutral particle decaying into an opposite-sign different-flavor dilepton pair, e^{±}µ^{∓}, e^{±}τ^{∓}, or µ^{±}τ^{∓} using 20.3 fb^{-1} of pp collision data at sqrt[s]=8 TeV collected by the ATLAS detector at the LHC. The numbers of observed candidate events are compatible with the standard model expectations. Limits are set on the cross section of new phenomena in two scenarios: the production of ν[over Ë]_{τ} in R-parity-violating supersymmetric models and the production of a lepton-flavor-violating Z^{'} vector boson.
RESUMO
This Letter reports evidence of triple gauge boson production ppâW(âν)γγ+X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb^{-1}, collected by the ATLAS detector in 2012. Events are selected using the W boson decay to eν or µν as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.
RESUMO
With an integrated luminosity of 2.47 fb(-1) recorded by the ATLAS experiment at the LHC, the exclusive decays B(s)(0)âJ/ψÏ and B(d)(0)âJ/ψK(*0) of B mesons produced in pp collisions at âs=7 TeV are used to determine the ratio of fragmentation fractions f(s)/f(d). From the observed B(s)(0)âJ/ψÏ and B(d)(0)âJ/ψK(*0) yields, the quantity (f(s)/f(d))[B(B(s)(0)âJ/ψÏ)/B(B(d)(0)âJ/ψK(*0))] is measured to be 0.199±0.004(stat)±0.008(syst). Using a recent theory prediction for [B(B(s)(0)âJ/ψÏ)/B(B(d)(0)âJ/ψK(*0))] yields (f(s)/f(d))=0.240±0.004(stat)±0.010(syst)±0.017(th). This result is based on a new approach that provides a significant improvement of the world average.
RESUMO
Searches are performed for resonant and nonresonant Higgs boson pair production in the γγbb[over ¯] final state using 20 fb^{-1} of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of nonresonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow Xâhh resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.
RESUMO
A search for the decays of the Higgs and Z bosons to J/ψγ and Ï(nS)γ (n=1,2,3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb^{-1} collected at sqrt[s]=8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J/ψγ final state the limits are 1.5×10^{-3} and 2.6×10^{-6} for the Higgs and Z boson decays, respectively, while in the Ï(1S,2S,3S)γ final states the limits are (1.3,1.9,1.3)×10^{-3} and (3.4,6.5,5.4)×10^{-6}, respectively.
RESUMO
Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at â(s)NN=2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R=0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32