RESUMO
OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.
Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Imunoglobulina G , RecidivaRESUMO
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
RESUMO
Interferon (IFN)-induced immunoproteasomes (i-proteasomes) have been associated with improved processing of major histocompatibility complex (MHC) class I antigens. Here, we show that i-proteasomes function to protect cell viability under conditions of IFN-induced oxidative stress. IFNs trigger the production of reactive oxygen species, which induce protein oxidation and the formation of nascent, oxidant-damaged proteins. We find that the ubiquitylation machinery is concomitantly upregulated in response to IFNs, functioning to target defective ribosomal products (DRiPs) for degradation by i-proteasomes. i-proteasome-deficiency in cells and in murine inflammation models results in the formation of aggresome-like induced structures and increased sensitivity to apoptosis. Efficient clearance of these aggregates by the enhanced proteolytic activity of the i-proteasome is important for the preservation of cell viability upon IFN-induced oxidative stress. Our findings suggest that rather than having a specific role in the production of class I antigens, i-proteasomes increase the peptide supply for antigen presentation as part of a more general role in the maintenance of protein homeostasis.
Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Interferons/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Animais , Apresentação de Antígeno , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Homeostase , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , UbiquitinaçãoRESUMO
BACKGROUND: Data on cognition in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are limited to studies with small sample sizes. Therefore, we aimed to analyse the extent, characteristics and the longitudinal course of potential cognitive deficits in patients with MOGAD. METHODS: The CogniMOG-Study is a prospective, longitudinal and multicentre observational study of 113 patients with MOGAD. Individual cognitive performance was assessed using the Paced Auditory Serial Addition Task (PASAT), the Symbol Digit Modalities Test (SDMT) and the Multiple Sclerosis Inventory Cognition (MuSIC), which are standardised against normative data from healthy controls. Cognitive performance was assessed at baseline and at 1-year and 2-year follow-up assessments. Multiple linear regression was used to analyse demographic and clinical predictors of cognitive deficits identified in previous correlation analyses. RESULTS: At baseline, the study sample of MOGAD patients showed impaired standardised performance on MuSIC semantic fluency (mean=-0.29, 95% CI (-0.47 to -0.12)) and MuSIC congruent speed (mean=-0.73, 95% CI (-1.23 to -0.23)). Around 1 in 10 patients showed deficits in two or more cognitive measures (11%). No decline in cognition was observed during the 1-year and 2-year follow-up period. Cerebral lesions were found to be negatively predictive for SDMT (B=-8.85, 95% CI (-13.57 to -4.14)) and MuSIC semantic fluency (B=-4.17, 95% CI (-6.10 to -2.25)) test performance. CONCLUSIONS: Based on these data, we conclude that MOGAD patients show reduced visuomotor processing speed and semantic fluency to the extent that the disease burden includes cerebral lesions.
RESUMO
OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty patients with MOGAD and 139 healthy controls (HCs) were included. OCT data was acquired with (1) Spectralis spectral domain OCT (MOGAD: N = 66 and HCs: N = 103) and (2) Cirrus high-definition OCT (MOGAD: N = 14 and HCs: N = 36). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HCs (p < 0.001). MOGAD-NON eyes had lower GCIPL volume compared to HCs (p < 0.001) in the Spectralis, but not in the Cirrus cohort. Longitudinally (follow-up up to 3 years), MOGAD-ON with ON within the last 6-12 months before baseline exhibited greater pRNFL thinning than MOGAD-ON with an ON greater than 12 months ago (p < 0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with the HC cohort. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in patients with MOGAD. Yet, ongoing neuroaxonal damage or edema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in patients with MOGAD. ANN NEUROL 2022;92:476-485.
Assuntos
Síndromes de Imunodeficiência/complicações , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurite Óptica/complicações , Degeneração Retiniana/etiologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Estudos Longitudinais , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/etiologia , Retina/diagnóstico por imagem , Neurônios Retinianos , Tomografia de Coerência Óptica/métodosRESUMO
OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770.
Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/sangue , Neuromielite Óptica/tratamento farmacológico , Biomarcadores , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-CegoRESUMO
BACKGROUND: The novel optic neuritis (ON) diagnostic criteria include intereye differences (IED) of optical coherence tomography (OCT) parameters. IED has proven valuable for ON diagnosis in multiple sclerosis but has not been evaluated in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders (AQP4+NMOSD). We evaluated the diagnostic accuracy of intereye absolute (IEAD) and percentage difference (IEPD) in AQP4+NMOSD after unilateral ON >6 months before OCT as compared with healthy controls (HC). METHODS: Twenty-eight AQP4+NMOSD after unilateral ON (NMOSD-ON), 62 HC and 45 AQP4+NMOSD without ON history (NMOSD-NON) were recruited by 13 centres as part of the international Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica study. Mean thickness of peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) were quantified by Spectralis spectral domain OCT. Threshold values of the ON diagnostic criteria (pRNFL: IEAD 5 µm, IEPD 5%; GCIPL: IEAD: 4 µm, IEPD: 4%) were evaluated using receiver operating characteristics and area under the curve (AUC) metrics. RESULTS: The discriminative power was high for NMOSD-ON versus HC for IEAD (pRNFL: AUC 0.95, specificity 82%, sensitivity 86%; GCIPL: AUC 0.93, specificity 98%, sensitivity 75%) and IEPD (pRNFL: AUC 0.96, specificity 87%, sensitivity 89%; GCIPL: AUC 0.94, specificity 96%, sensitivity 82%). The discriminative power was high/moderate for NMOSD-ON versus NMOSD-NON for IEAD (pRNFL: AUC 0.92, specificity 77%, sensitivity 86%; GCIP: AUC 0.87, specificity 85%, sensitivity 75%) and for IEPD (pRNFL: AUC 0.94, specificity 82%, sensitivity 89%; GCIP: AUC 0.88, specificity 82%, sensitivity 82%). CONCLUSIONS: Results support the validation of the IED metrics as OCT parameters of the novel diagnostic ON criteria in AQP4+NMOSD.
Assuntos
Aquaporinas , Neuromielite Óptica , Neurite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Estudos Retrospectivos , Benchmarking , Neurite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodos , Autoanticorpos , Aquaporina 4RESUMO
BACKGROUND: The N-MOmentum trial investigated safety and efficacy of inebilizumab in participants with neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: Evaluate the attack identification process and adjudication committee (AC) performance in N-MOmentum. METHODS: Adults (n = 230) with NMOSD and Expanded Disability Status Scale score ⩽8 were randomized (3:1) to inebilizumab 300 mg or placebo. The randomized controlled period was 28 weeks or until adjudicated attack. Attacks were adjudicated according to 18 predefined criteria. Magnetic resonance imaging (MRI) and biomarker (serum glial fibrillary acidic protein [sGFAP]) analyses were performed. RESULTS: A total of 64 participant-reported neurological events occurred; 51 (80%) were investigator-determined to be attacks. The AC confirmed 43 of the investigator-determined attacks (84%). There was high inter- and intra-AC-member agreement. In 25/64 events (39%) and 14/43 AC-adjudicated attacks (33%), MRI was reviewed during adjudication. Retrospective analysis revealed new domain-specific T1 and T2 MRI lesions in 90% of adjudicated attacks. Increased mean sGFAP concentrations (>2-fold change) from baseline were observed in 56% of adjudicated attacks versus 14% of investigator-determined attacks rejected by the AC and 31% of participant-reported events determined not to be attacks. CONCLUSION: AC adjudication of NMOSD attacks according to predefined criteria appears robust. MRI lesion correlates and sGFAP elevations were found in most adjudicated attacks.
Assuntos
Anticorpos Monoclonais Humanizados , Neuromielite Óptica , Neuromielite Óptica/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Biomarcadores/sangue , Proteína Glial Fibrilar Ácida/sangue , Anticorpos Monoclonais Humanizados/uso terapêutico , Estudos RetrospectivosRESUMO
BACKGROUND: Data on the humoral vaccine response in patients on anti-interleukin-6 (IL-6) receptor therapy remain scarce. OBJECTIVE: The main objective of our study was to investigate the humoral response after vaccination against SARS-CoV-2 in neuromyelitis optica spectrum disorder (NMOSD)/myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) patients treated with anti-IL-6 receptor therapy. Secondarily, we analyzed relapse activity timely associated with vaccination. METHODS: In this retrospective cross-sectional multicenter study, we included 15 healthy controls and 48 adult NMOSD/MOGAD patients without previous COVID-19 infection. SARS-CoV-2 spike protein antibody titers during anti-IL-6 receptor therapy were compared to anti-CD20 antibody therapy, oral immunosuppressants, and to nonimmunosuppressed individuals. RESULTS: We observed 100% seroconversion in the anti-IL-6 receptor treatment group. Titers of SARS-CoV-2 spike protein antibodies were lower compared to healthy controls (720 vs 2500 binding antibody units (BAU)/mL, p = 0.004), but higher than in the anti-CD20 (720 vs 0.4 BAU/mL, p < 0.001) and comparable to the oral immunosuppressant group (720 vs 795 BAU/mL, p = 1.0). We found no association between mRNA-based vaccines and relapse activity in patients with or without immunotherapy. CONCLUSIONS: Despite being lower than in healthy controls, the humoral vaccine response during anti-IL-6 receptor therapy was evident in all patients and substantially stronger compared to anti-CD20 treatment. No relevant disease activity occurred after mRNA vaccination against SARS-CoV-2.
Assuntos
COVID-19 , Neuromielite Óptica , Humanos , Vacinas contra COVID-19 , Estudos Transversais , Neuromielite Óptica/terapia , Estudos Retrospectivos , SARS-CoV-2 , Imunoterapia , Anticorpos , Imunossupressores/uso terapêutico , RNA Mensageiro , Recidiva , Anticorpos Antivirais , VacinaçãoRESUMO
BACKGROUND: There is limited and inconsistent information on the prevalence of cognitive impairment in neuromyelitis optica spectrum disorders (NMOSD). OBJECTIVE: To assess cognitive performance and changes over time in NMOSD. METHODS: This study included data from 217 aquaporin-4-IgG-seropositive (80%) and double-seronegative NMOSD patients. Cognitive functions measured by Symbol Digit Modalities Test (SDMT), Paced Auditory Serial-Addition Task (PASAT), and/or Multiple Sclerosis Inventory Cognition (MuSIC) were standardized against normative data (N = 157). Intraindividual cognitive performance at 1- and 2-year follow-up was analyzed. Cognitive test scores were correlated with demographic and clinical variables and assessed with a multiple linear regression model. RESULTS: NMOSD patients were impaired in SDMT (p = 0.007), MuSIC semantic fluency (p < 0.001), and MuSIC congruent speed (p < 0.001). No significant cognitive deterioration was found at follow-up. SDMT scores were related to motor and visual disability (pBon < 0.05). No differences were found between aquaporin-4-IgG-seropositive and double-seronegative NMOSD. CONCLUSIONS: A subset of NMOSD patients shows impairment in visual processing speed and in semantic fluency regardless of serostatus, without noticeable changes during a 2-year observation period. Neuropsychological measurements should be adapted to physical and visual disabilities.
Assuntos
Esclerose Múltipla , Neuromielite Óptica , Humanos , Neuromielite Óptica/complicações , Neuromielite Óptica/epidemiologia , Estudos Prospectivos , Aquaporina 4 , Cognição , Imunoglobulina G , AutoanticorposRESUMO
BACKGROUND: Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE: To analyze systematically the CSF profile in COVID-19. METHODS: Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS: The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.
Assuntos
COVID-19/líquido cefalorraquidiano , Adulto , Barreira Hematoencefálica , COVID-19/complicações , Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Europa (Continente) , Feminino , Humanos , Imunidade Celular , Imunoglobulina G/líquido cefalorraquidiano , Ácido Láctico/líquido cefalorraquidiano , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/etiologia , Bandas Oligoclonais/líquido cefalorraquidiano , Estudos Retrospectivos , Punção Espinal , Síndrome de COVID-19 Pós-AgudaRESUMO
OBJECTIVE: Blood tests to monitor disease activity, attack severity, or treatment impact in neuromyelitis optica spectrum disorder (NMOSD) have not been developed. This study investigated the relationship between serum glial fibrillary acidic protein (sGFAP) concentration and NMOSD activity and assessed the impact of inebilizumab treatment. METHODS: N-MOmentum was a prospective, multicenter, double-blind, placebo-controlled, randomized clinical trial in adults with NMOSD. sGFAP levels were measured by single-molecule arrays (SIMOA) in 1,260 serial and attack-related samples from 215 N-MOmentum participants (92% aquaporin 4-immunoglobulin G-seropositive) and in control samples (from healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: At baseline, 62 participants (29%) exhibited high sGFAP concentrations (≥170 pg/ml; ≥2 standard deviations above healthy donor mean concentration) and were more likely to experience an adjudicated attack than participants with lower baseline concentrations (hazard ratio [95% confidence interval], 3.09 [1.6-6.1], p = 0.001). Median (interquartile range [IQR]) concentrations increased within 1 week of an attack (baseline: 168.4, IQR = 128.9-449.7 pg/ml; attack: 2,160.1, IQR = 302.7-9,455.0 pg/ml, p = 0.0015) and correlated with attack severity (median fold change from baseline [FC], minor attacks: 1.06, IQR = 0.9-7.4; major attacks: 34.32, IQR = 8.7-107.5, p = 0.023). This attack-related increase in sGFAP occurred primarily in placebo-treated participants (FC: 20.2, IQR = 4.4-98.3, p = 0.001) and was not observed in inebilizumab-treated participants (FC: 1.1, IQR = 0.8-24.6, p > 0.05). Five participants (28%) with elevated baseline sGFAP reported neurological symptoms leading to nonadjudicated attack assessments. INTERPRETATION: Serum GFAP may serve as a biomarker of NMOSD activity, attack risk, and treatment effects. ANN NEUROL 2021;89:895-910.
Assuntos
Proteína Glial Fibrilar Ácida/sangue , Neuromielite Óptica/sangue , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/tratamento farmacológico , Estudos Prospectivos , Medição de Risco , Análise de Sobrevida , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS: We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS: After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION: In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.
Assuntos
COVID-19 , Esclerose Múltipla , Vacinas Virais , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunidade , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos , SARS-CoV-2 , VacinaçãoRESUMO
BACKGROUND: Patients with anti-aquaporin-4 antibody seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorders (NMOSDs) frequently suffer from optic neuritis (ON) leading to severe retinal neuroaxonal damage. Further, the relationship of this retinal damage to a primary astrocytopathy in NMOSD is uncertain. Primary astrocytopathy has been suggested to cause ON-independent retinal damage and contribute to changes particularly in the outer plexiform layer (OPL) and outer nuclear layer (ONL), as reported in some earlier studies. However, these were limited in their sample size and contradictory as to the localisation. This study assesses outer retinal layer changes using optical coherence tomography (OCT) in a multicentre cross-sectional cohort. METHOD: 197 patients who were AQP4-IgG+ and 32 myelin-oligodendrocyte-glycoprotein antibody seropositive (MOG-IgG+) patients were enrolled in this study along with 75 healthy controls. Participants underwent neurological examination and OCT with central postprocessing conducted at a single site. RESULTS: No significant thinning of OPL (25.02±2.03 µm) or ONL (61.63±7.04 µm) were observed in patients who were AQP4-IgG+ compared with patients who were MOG-IgG+ with comparable neuroaxonal damage (OPL: 25.10±2.00 µm; ONL: 64.71±7.87 µm) or healthy controls (OPL: 24.58±1.64 µm; ONL: 63.59±5.78 µm). Eyes of patients who were AQP4-IgG+ (19.84±5.09 µm, p=0.027) and MOG-IgG+ (19.82±4.78 µm, p=0.004) with a history of ON showed parafoveal OPL thinning compared with healthy controls (20.99±5.14 µm); this was not observed elsewhere. CONCLUSION: The results suggest that outer retinal layer loss is not a consistent component of retinal astrocytic damage in AQP4-IgG+ NMOSD. Longitudinal studies are necessary to determine if OPL and ONL are damaged in late disease due to retrograde trans-synaptic axonal degeneration and whether outer retinal dysfunction occurs despite any measurable structural correlates.
Assuntos
Aquaporina 4/sangue , Neuromielite Óptica/fisiopatologia , Retina/fisiopatologia , Adulto , Astrócitos/patologia , Autoanticorpos , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia de Coerência ÓpticaRESUMO
Anti-NMDA receptor (NMDAR) encephalitis is frequently associated with demyelinating disorders (e.g., multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein-associated disease (MOGAD)) with regard to clinical presentation, neuropathological and cerebrospinal fluid findings. Indeed, autoantibodies (AABs) against the GluN1 (NR1) subunit of the NMDAR diminish glutamatergic transmission in both neurons and oligodendrocytes, leading to a state of NMDAR hypofunction. Considering the vital role of oligodendroglial NMDAR signaling in neuron-glia communication and, in particular, in tightly regulated trophic support to neurons, the influence of GluN1 targeting on the physiology of myelinated axon may be of importance. We applied a myelinating spinal cord cell culture model that contains all major CNS cell types, to evaluate the effects of a patient-derived GluN1-specific monoclonal antibody (SSM5) on neuronal and myelin integrity. A non-brain reactive (12D7) antibody was used as the corresponding isotype control. We show that in cultures at the late stage of myelination, prolonged treatment with SSM5, but not 12D7, leads to neuronal damage. This is characterized by neurite blebbing and fragmentation, and a reduction in the number of myelinated axons. However, this significant toxic effect of SSM5 was not observed in earlier cultures at the beginning of myelination. Anti-GluN1 AABs induce neurodegenerative changes and associated myelin loss in myelinated spinal cord cultures. These findings may point to the higher vulnerability of myelinated neurons towards interference in glutamatergic communication, and may refer to the disturbance of the NMDAR-mediated oligodendrocyte metabolic supply. Our work contributes to the understanding of the emerging association of NMDAR encephalitis with demyelinating disorders.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Neuromielite Óptica , Humanos , Técnicas de Cocultura , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroglia/metabolismo , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Aquaporina 4RESUMO
BACKGROUND: In the N-MOmentum trial, the risk of an adjudicated neuromyelitis optica spectrum disorder (NMOSD) attack was significantly reduced with inebilizumab compared with placebo. OBJECTIVE: To demonstrate the robustness of this finding, using pre-specified sensitivity and subgroup analyses. METHODS: N-MOmentum is a prospective, randomized, placebo-controlled, double-masked trial of inebilizumab, an anti-CD19 monoclonal B-cell-depleting antibody, in patients with NMOSD. Pre-planned and post hoc analyses were performed to evaluate the primary endpoint across a range of attack definitions and demographic groups, as well as key secondary endpoints. RESULTS: In the N-MOmentum trial (ClinicalTrials.gov: NCT02200770), 174 participants received inebilizumab and 56 received placebo. Attack risk for inebilizumab versus placebo was consistently and significantly reduced, regardless of attack definition, type of attack, baseline disability, ethnicity, treatment history, or disease course (all with hazard ratios < 0.4 favoring inebilizumab, p < 0.05). Analyses of secondary endpoints showed similar trends. CONCLUSION: N-MOmentum demonstrated that inebilizumab provides a robust reduction in the risk of NMOSD attacks regardless of attack evaluation method, attack type, patient demographics, or previous therapy.The N-MOmentum study is registered at ClinicalTrials.gov: NCT2200770.
Assuntos
Neuromielite Óptica , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Aquaporina 4 , Humanos , Neuromielite Óptica/tratamento farmacológico , Estudos ProspectivosRESUMO
BACKGROUND AND PURPOSE: Myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) is an inflammatory autoimmune condition of the central nervous system. However, data on pain and depression have remained scarce. The aim of this study was to assess features of chronic pain and depression as well as their impact on health-related quality of life (hr-QoL) in MOGAD. METHODS: Patients with MOGAD were identified in the Neuromyelitis Optica Study Group registry. Data were acquired by a questionnaire, including clinical, demographic, pain (PainDetect, Brief Pain Inventory-Short Form, McGill Pain Questionnaire-Short Form), depression (Beck Depression Inventory-II), and hr-QoL (Short Form-36 Health Survey) items. RESULTS: Twenty-two of 43 patients suffered from MOGAD-related pain (11 nociceptive, eight definite neuropathic, three possible neuropathic) and 18 from depression. Patients with neuropathic pain had the highest pain intensity and most profound activities of daily living (ADL) impairment. Fifteen patients reported spasticity-associated pain, including four with short-lasting painful tonic spasms. Later disease onset, profound physical impairment, and depression were associated with chronic pain. Physical QoL was more affected in pain sufferers (p < 0.001) than in pain-free patients, being most severely reduced by neuropathic pain (p = 0.016). Pain severity, visual impairment, and gait impairment independently predicted lower physical QoL. Depression was the only factor reducing mental QoL. Twelve patients still suffering from moderate pain (pain severity 4.6 ± 2.3) received pain medication. Only four out of 10 patients with moderate to severe depression took antidepressants. CONCLUSIONS: Being highly prevalent, pain and depression strongly affect QoL and ADL in MOGAD. Both conditions remain insufficiently controlled in real-life clinical practice.
Assuntos
Dor Crônica , Qualidade de Vida , Atividades Cotidianas , Adulto , Autoanticorpos , Dor Crônica/epidemiologia , Depressão/epidemiologia , Humanos , Glicoproteína Mielina-OligodendrócitoRESUMO
Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.
Assuntos
4-Aminopiridina/farmacologia , Esclerose Múltipla/patologia , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/patologia , Degeneração Retiniana/patologia , Adulto , Idoso , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Neurais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos WistarRESUMO
Neuromyelitis optica spectrum disorder (NMOSD), derived from NMO or Devic's disease, is considered as a distinct disease since the discovery of a novel and pathogenic serum autoantibody targeting aquaporin4 (AQP4-IgG) and is distinguished from classical multiple sclerosis (MS). With the continuous extension of knowledge on the clinical manifestations, the previously narrow diagnostic term NMO became NMOSD, which has also been used in the diagnostic criteria since 2015. The current diagnostic criteria enable the early diagnosis of NMOSD in patients with and without AQP4-IgG. Typical clinical manifestations include involvement of the spinal cord, optic nerve and brainstem. Typically patients with the disease also present with neuropathic pain, painful tonic spasms and also other unusual manifestations in NMOSD. Especially in AQP4-IgG positive NMOSD patients, the coexistence with other autoimmune diseases is frequently observed. In most cases NMOSD follows a relapsing course with exacerbation-free periods sometimes lasting years and can be manifested first in advanced adulthood. A subset of AQP4-IgG negative NMOSD patients have been found to harbor autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG), which is considered as a distinct disease entity: these MOG antibody-associated disorders (MOGAD) can present with clinical syndromes resembling both NMOSD and MS and are currently the subject of intensive research.