Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 164: 398-408, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30142606

RESUMO

Fungi can use n-hexadecane (HXD) as a sole carbon source. But the mechanism of HXD degradation remains unclear. This work mainly aimed to study the degradation of HXD by Aspergillus sp. RFC-1 obtained from oil-contaminated soil. The HXD content, medium acidification and presence of hexadecanoic acid in the medium were determined by gas chromatography-mass spectrometry, and fungal growth was observed. Enzyme and gene expression assays suggested the involvement of an alkane hydroxylase, an alcohol dehydrogenase, and a P450 enzyme system in HXD degradation. A biosurfactant produced by the strain RFC-1 was also characterized. During 10 days of incubation, 86.3% of HXD was degraded by RFC-1. The highest activities of alkane hydroxylase (125.4 µmol mg-1 protein) and alcohol dehydrogenase (12.5 µmol mg-1 proteins) were recorded. The expression level of cytochrome P450 gene associated with oxidation was induced (from 0.94-fold to 5.45-fold) under the HXD condition by Real-time PCR analysis. In addition, HXD accumulated in inclusion bodies of RFC-1with the maximum of 5.1 g L-1. Results of blood agar plate and thin-layer chromatography analysis showed RFC-1 released high lipid and emulsification activity in the fungal culture. Induced cell surface hydrophobicity and reduced surface tension also indicated the RFC-1-mediated biosurfactant production, which facilitated the HXD degradation and supported the degradation process.


Assuntos
Alcanos/metabolismo , Aspergillus/metabolismo , Biodegradação Ambiental , Álcool Desidrogenase/metabolismo , Citocromo P-450 CYP4A/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/metabolismo
2.
Microbiologyopen ; 8(1): e00619, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577679

RESUMO

Petroleum pollution inevitably occurs at any stage of oil production and exerts a negative impact on the environment. Some microorganisms can degrade petroleum hydrocarbons (PHs). Polluted sludge of Rumaila oil field was use to isolate the highly efficient hydrocarbon-degrading fungal strain. Aspergillus sp. RFC-1 was obtained and its degradation ability for petroleum hydrocarbons was evaluated through surface adsorption, cell uptake, hydrophobicity, surface tension, biosurfactant production, and emulsification activity. In addition, the degradation mechanism was investigated. The results indicated the strain RFC-1 showed high removal activity for PHs, including biodegradation, adsorption, and emulsifiability. On the day 7 of incubation, the removal efficiencies of crude oil, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) reached 60.3%, 97.4%, 84.9%, and 90.7%, respectively. Biodegradation efficiencies of crude oil, NAP, PHE, and PYR were 51.8%, 84.6%, 50.3%, and 55.1%, respectively. Surface adsorption and cell absorption by live mycelial pellets followed a decreasing order: PYR ≥ PHE > NAP > crude oil. Adsorption by heat-killed mycelial pellets increased within 40 and 10 min for crude oil and PAHs, respectively, and remained constant thereafter. Effects of cell surface hydrophobicity, surface tension, and emulsification index were discussed. Intra- and extracellular enzymes of strain RFC-1 played important roles in PHs degradation. The strain RFC-1 is a prospective strain for removing PHs from aqueous environments.


Assuntos
Aspergillus/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Adsorção , Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Biotransformação , Poluentes Ambientais/metabolismo , Esgotos/microbiologia , Fatores de Tempo
3.
Biotechnol Rep (Amst) ; 17: 104-109, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29541603

RESUMO

Among four crude oil-degrading fungi strains that were isolated from a petroleum-polluted area in the Rumaila oil field, two fungi strains showed high activity in aliphatic hydrocarbon degradation. ITS sequencing and analysis of morphological and biochemical characteristics identified these strains as Penicillium sp. RMA1 and RMA2. Gravimetric and gas chromatography analysis of the crude oil remaining in the culture medium after 14 days of incubation at 30 °C showed that RMA1 and RMA2 degraded the crude oil by 57% and 55%, respectively. These strains reduced surface tension when cultured on crude oil (1% v/v) and exhibited a cell surface hydrophobicity of more than 70%. These results suggested that RMA1 and RMA2 performed effective crude oil-degrading activity and crude oil emulsification. In conclusion, these fungal strains can be used in bioremediation process and oil pollution reduction in aquatic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA