Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 71, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194143

RESUMO

In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p < 0.05). The photosynthetic performance of strains was studied using the pulse-amplitude modulation (PAM) fluorometer; parameters measured include the following: maximum quantum efficiency (Fv/Fm), alpha (α), maximum relative electron transport rate (rETRmax), photo-adaptive index (Ek) and non-photochemical quenching (NPQ). The Fv/Fm values of all strains, except Synechococcus UMACC 371, ranged between 0.37 and 0.50 during exponential and stationary growth phases, suggesting their general health during those periods. The low Fv/Fm value of Synechococcus UMACC 371 was possibly caused by the presence of background fluorescence from phycobilisomes or phycobiliproteins. Electrochemical studies via cyclic voltammetry (CV) suggest the presence of electrochemically active proteins on the cellular surface of strains on the carbon anode of the BPV platform, while morphological studies via field emission scanning electron microscope (FESEM) imaging verify the biocompatibility of the biofilms on the carbon anode. KEY POINTS: • Maximum power output of 0.108 mW m-2 is recorded by Chlorella UMACC 258 • There is a positive correlation between chl-a content and power output • Proven biocompatibility between biofilms and carbon anode sans exogenous mediators.


Assuntos
Chlorella , Microalgas , Aquicultura , Biofilmes , Carbono , Ciclo Celular
2.
Chem Rec ; 23(2): e202200149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408911

RESUMO

Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.

3.
Chem Rec ; 23(1): e202200143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285706

RESUMO

The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.

4.
J Fluoresc ; 33(5): 2023-2039, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36971980

RESUMO

1,3,4-Oxadiazole pharmacophore is still considered a viable biologically active scaffold for the synthesis of more effectual and broad-spectrum antimicrobial agents. Therefore, the present study is based on five 1,3,4-oxadiazole target structures, viz., CAROT, CAROP, CARON (D-A-D-A systems) and NOPON and BOPOB (D-A-D-A-D systems) bearing various bioactive heterocyclic moieties relevant to potential biological activities. Three of the compounds, CARON, NOPON and BOPOB were assessed in-vitro for their efficacy as antimicrobial agents against gram positive (Staphylococcus aureus and Bacillus cereus) and gram negative (Escherichia coli and Klebsiella pneumonia) bacteria; and two fungi, Aspergillus niger and Candida albicans; also, as an anti-tuberculosis agent against Mycobacterium tuberculosis. Most of the tested compounds displayed promising antimicrobial activity, especially CARON which was then analyzed for the minimum inhibitory concentration (MIC) studies. Similarly, NOPON portrayed the highest anti-TB activity among the studied compounds. Consequently, to justify the detected anti-TB activity of these compounds and to recognize the binding mode and important interactions between the compounds and the ligand binding site of the potential target, these compounds were docked into the active binding site of cytochrome P450 CYP121 enzyme of Mycobacterium tuberculosis, 3G5H. The docking results were in good agreement with the result of in-vitro studies. In addition, all the five compounds were tested for their cell viability and have been investigated for cell labeling applications. To conclude, one of the target compounds, CAROT was used for the selective recognition of cyanide ion by 'turn-off' fluorescent sensing technique. The entire sensing activity was examined by spectrofluorometric method and MALDI spectral studies. The limit of detection obtained was 0.14 µM.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Oxidiazóis/farmacologia , Fungos , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/química , Relação Estrutura-Atividade , Antifúngicos/química
5.
Environ Res ; 231(Pt 1): 116046, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150390

RESUMO

Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nitrogênio , Corantes Fluorescentes/química
6.
Environ Res ; 218: 114905, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442522

RESUMO

CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique. The dry S1 coal showed the highest CO2 adsorption capacity of 1.3 mmol g-1, at 300 K and 6 MPa among the other coal samples. The experimental results of CO2 adsorption were investigated using adsorption isotherms, thermodynamics, and kinetic models. Nonlinear analysis has been employed to investigate the data of CO2 adsorption onto coal samples via three parameter isotherm equilibrium models, namely Redlich Peterson, Koble Corrigan, Toth, Sips, and Hill, and four parameter equilibrium model, namely Jensen Seaton. The results of adsorption isotherm suggested that the Jensen Seaton model described the experimental data well. Gibb's free energy change values are negative, suggesting that CO2 adsorption onto the coal occurred randomly. Enthalpy change values in the negative range established that CO2 adsorption onto coal is an exothermic mechanism. Webber's pore-diffusion model, in particular, demonstrated that pore-diffusion was the main controlling stage in CO2 adsorption onto coal matrix. The activation energy of the coals was calculated to be below -13 kJ mol-1, indicating that adsorption of CO2 onto coals occurred through physisorption. The results demonstrate that CO2 adsorption onto coal matrix is favorable, spontaneous, and the adsorbed CO2 molecules accumulate more onto coal matrix. The observations of this investigation have significant implications for a more accurate measurement of CO2 injection into Malaysian coalbed seams.


Assuntos
Dióxido de Carbono , Carvão Mineral , Dióxido de Carbono/análise , Adsorção , Termodinâmica , Temperatura , Cinética
7.
J Nanobiotechnology ; 21(1): 141, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120637

RESUMO

Since the end of 2019, a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has deprived numerous lives worldwide, called COVID-19. Up to date, omicron is the latest variant of concern, and BA.5 is replacing the BA.2 variant to become the main subtype rampaging worldwide. These subtypes harbor an L452R mutation, which increases their transmissibility among vaccinated people. Current methods for identifying SARS-CoV-2 variants are mainly based on polymerase chain reaction (PCR) followed by gene sequencing, making time-consuming processes and expensive instrumentation indispensable. In this study, we developed a rapid and ultrasensitive electrochemical biosensor to achieve the goals of high sensitivity, the ability of distinguishing the variants, and the direct detection of RNAs from viruses simultaneously. We used electrodes made of MXene-AuNP (gold nanoparticle) composites for improved sensitivity and the CRISPR/Cas13a system for high specificity in detecting the single-base L452R mutation in RNAs and clinical samples. Our biosensor will be an excellent supplement to the RT-qPCR method enabling the early diagnosis and quick distinguishment of SARS-CoV-2 Omicron BA.5 and BA.2 variants and more potential variants that might arise in the future.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ouro , Mutação , RNA
8.
Chem Biodivers ; 20(9): e202300257, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37578300

RESUMO

In the presented work, a new series of three different 4-((3,5-dichloro-2-[(2/4-halobenzyl)oxy]phenyl)sulfonyl)morpholines was synthesized and the structure of these compounds were corroborated by 1 H-NMR & 13 C-NMR studies. The in vitro results established all the three compounds as potent tyrosinase inhibitors relative to the standard. The Kinetics mechanism plots established that compound 8 inhibited the enzyme non-competitively. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0025 µM. Additionally, computational techniques were used to explore electronic structures of synthesized compounds. Fully optimized geometries were further docked with tyrosinase enzyme for inhibition studies. Reasonably good binding/interaction energies and intermolecular interactions were obtained. Finally, drug likeness was also predicted using the rule of five (RO5) and Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. It is anticipated that current experimental and computational investigations will evoke the scientific interest of the research community for the above-entitled compounds.


Assuntos
Monofenol Mono-Oxigenase , Sulfonamidas , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Simulação de Acoplamento Molecular , Morfolinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética
9.
J Mol Liq ; 382: 121904, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37151376

RESUMO

In the current study, a hybrid computational approach consisting of different computational methods to explore the molecular electronic structures, bioactivity and therapeutic potential of piperidine compounds against SARS-CoV-2. The quantum chemical methods are used to study electronic structures of designed derivatives, molecular docking methods are used to see the most potential docking interactions for main protease (MPro) of SARS-CoV-2 while molecular dynamic and MMPBSA analyses are performed in bulk water solvation process to mimic real protein like aqueous environment and effectiveness of docked complexes. We designed and optimized piperidine derivatives from experimentally known precursor using quantum chemical methods. The UV-Visible, IR, molecular orbitals, molecular electrostatic plots, and global chemical reactivity descriptors are carried out which illustrate that the designed compounds are kinetically stable and reactive. The results of MD simulations and binding free energy revealed that all the complex systems possess adequate dynamic stability, and flexibility based on their RMSD, RMSF, radius of gyration, and hydrogen bond analysis. The computed net binding free energy ( Δ G b i n d ) as calculated by MMPBSA method for the complexes showed the values of -4.29 kcal.mol-1 for P1, -5.52 kcal.mol-1 for P2, -6.12 kcal.mol-1 for P3, -6.35 kcal.mol-1 for P4, -5.19 kcal.mol-1 for P5, 3.09 kcal.mol-1 for P6, -6.78 kcal.mol-1 for P7, and -6.29 kcal.mol-1 for P8.The ADMET analysis further confirmed that none of among the designed ligands violates the Lipinski rule of five (RO5). The current comprehensive investigation predicts that all our designed compounds are recommended as prospective therapeutic drugs against Mpro of SARS-CoV-2 and it provokes the scientific community to further perform their in-vitro analysis.

10.
Chem Rec ; 22(12): e202200097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103617

RESUMO

Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.

11.
Chem Rec ; 22(7): e202100310, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35138017

RESUMO

Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .

12.
Environ Res ; 214(Pt 4): 113959, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995219

RESUMO

Conversion and reducing agent (NaBH4) effect on zero valent iron into Fe3O4 nanoparticles with diverse molar ratios of reducing agent was produced through chemical reduction technique. The structural, optical, vibrational analyses were executed via XRD, UV-Vis, Raman, and FT-IR analysis. The crystallite size obtained were 35 nm, 27 nm, and 18 nm for Fe:NaBH4 (1:1), Fe:NaBH4 (1:2) and Fe:NaBH4 (1:3). The morphology of the Fe:NaBH4 (1:1) was not in good orientation with higher dimensions. As explored in Fe:NaBH4 (1:2) and (1:3) samples, there is a proper growth of nanoneedles and nanosheets formation. This was due to the addition of reducing agent which greatly helped in enhancement of morphology. The prepared photocatalysts were tested to reduce Malachite Green (MG) under UV illumination. The pure dye solution obtained 57% efficiency after irradiation. Fe:NaBH4 (1:3) photocatalyst achieved 97% efficiency on reducing pollutants. The rate constant values calculated was 0.007, 0.013, 0.02 and 0.03 min-1 for pure, Fe: NaBH4 (1:1), Fe: NaBH4 (1:2) and Fe: NaBH4 (1:3) assisted MG samples. The as prepared photocatalyst is more potential one on removal of toxic pollutants from wastewater which is due to the better enhancement of nanoneedles and nanosheets oriented by the effect of reducing agent. The advantage of Fe3O4 nanoparticles for wastewater is that the removal of these nanoparticles can be ease with magnetic separation methods. On considering the advantage of removing of photocatalyst and efficiency, this prepared product is suitable one for wastewater remediation process in future days.


Assuntos
Ferro , Poluentes Químicos da Água , Catálise , Ferro/química , Luz , Substâncias Redutoras , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/análise
13.
Mikrochim Acta ; 189(5): 200, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474402

RESUMO

Three-dimensional (3D) cobalt molybdate (CoMoO4) hierarchical nanoflake arrays on pencil graphite electrode (PGE) (CoMoO4/PGE) are actualized via one-pot hydrothermal technique. The morphological features comprehend that the CoMoO4 nanoflake arrays expose the 3D, open, porous, and interconnected network architectures on PGE. The formation and growth mechanisms of CoMoO4 nanostructures on PGE are supported with different structural and morphological characterizations. The constructed CoMoO4/PGE is operated as an electrocatalytic probe in enzyme-less electrochemical glucose sensor (ELEGS), confronting the impairments of cost- and time-obsessed conventional electrode polishing and catalyst amendment progressions and obliged the employment of a non-conducting binder. The wide-opened interior and exterior architectures of CoMoO4 nanoflake arrays escalate the glucose utilization efficacy, whilst the intertwined nanoflakes and graphitic carbon layers, respectively, of CoMoO4 and PGE articulate the continual electron mobility and catalytically active channels of CoMoO4/PGE. It jointly escalates the ELEGS concerts of CoMoO4/PGE including high sensitivity (1613 µA mM-1 cm-2), wide linear glucose range (0.0003-10 mM), and low detection limit (0.12 µM) at a working potential of 0.65 V (vs. Ag/AgCl) together with the good recovery in human serum. Thus, the fabricated CoMoO4/PGE extends exclusive virtues of modest electrode production, virtuous affinity, swift response, and excellent sensitivity and selectivity, exposing innovative prospects to reconnoitring the economically viable ELEGSs with binder-free, affordable cost, and expansible 3D electrocatalytic probes.


Assuntos
Grafite , Humanos , Cobalto , Eletrodos , Glucose , Grafite/química
14.
Arch Pharm (Weinheim) ; 355(8): e2200084, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567313

RESUMO

The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, ß-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Cromonas/farmacologia , Cumarínicos , Dopaminérgicos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Relação Estrutura-Atividade
15.
J Phys Chem Solids ; 170: 110886, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35847561

RESUMO

The recent COVID-19 outbreak caused by the novel coronavirus SARS-CoV-2 has an immense impact on global health and economy. Although vaccines are being used, urgent need of drugs based on natural products with high efficacy and safety is a pressing priority. Quinoline alkaloids are well known for their therapeutic action against malaria; initially, it was tried against Coronaviruses. It is a basic vital scaffold to design drugs with required biological and pharmacological activities. In this present study, a new quinoline compound was synthesized and characterized by spectroscopy techniques. Crystal structure was established by SCXRD analysis and data is used as an input to perform various computations. Additionally, using state-of-the-art quantum computational techniques, the geometry optimization and calculation of UV-Vis spectrum of 2F6M3CQ were performed at B3LYP/6-311G* level of theory. The optimized molecular geometric parameters as well as UV-Vis spectrum values are found to be in good agreement with their respective experimental results. The visualization of 3-D plots of FMO and MEP indicated the structure and reactivity trends of 2F6M3CQ molecule. Molecular docking methods were utilized to find the drug ability of 2F6M3CQ with Mproprotein of SARS-CoV-2. There were many intermolecular interactions between Mpro protein and 2F6M3CQ molecule which lead to good binding energy (-5.5 kcal/mol) between them which was found to be better than the binding energy of chloroquinine molecule (-4.5 kcal/mol) as studied under same docking protocols. Finally, drug likeness and ADME properties of 2F6M3CQ were also analyzed. There is no violation found for RO5 in our 2F6M3CQ compound. ADME analysis shows drug like properties of compound 2F6M3CQ which predicts that it might be a potential candidate for inhibition of SARS-CoV-2.

16.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328542

RESUMO

Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, ß-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Doença de Alzheimer/tratamento farmacológico , Chalconas/química , Inibidores da Colinesterase/química , Descoberta de Drogas , Humanos , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054912

RESUMO

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Fulerenos/química , Nanopartículas Metálicas/química , Prata/química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Análise Espectral
18.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557807

RESUMO

A series of new benzothiazole-derived donor-acceptor-based compounds (Comp1-4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1-4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV-vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements.

19.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807251

RESUMO

We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14-629% in the roots, 15-2964% in the stems, and 26-4020% in the leaves; the accumulation of Cu was 18-2757% in the roots, 15-4506% in the stems, and 23-4605% in the leaves; and the accumulation of Pb was 13-4122% in the roots, 21-3588% in the stems, and 21-4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.


Assuntos
Poluentes do Solo , Sorghum , Antioxidantes/análise , Ácido Glutâmico/análise , Peróxido de Hidrogênio/análise , Micro-Ondas , Folhas de Planta/química , Poluentes do Solo/análise , Superóxido Dismutase , Águas Residuárias/análise
20.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268671

RESUMO

Over recent decades, much attention has been given to imply the natural products in cancer therapy alone or in combination with other established procedures. Insects have a rich history in traditional medicine across the globe, which holds promise for the future of natural product drug discovery. Cecropins, peptides produced by insects, are components of a defense system against infections and are well known to exert antimicrobial and antitumor capabilities. The present study aimed to investigate, for the first time, the role of curcumin in enhancing the anticancer effect of Musca domestica larval hemolymph. Third larval instars of M. domestica were injected with curcumin and the hemolymph was picked at 4, 8, and 24 h post-curcumin injection. M. domestica cecropin A (MdCecA) was evaluated in control and injected larval hemolymphs. The cytotoxicity on breast cancer cell lines (MCF-7) and normal Vero cells was assessed to be comparable to control larval hemolymph. Curcumin-injected larval hemolymphs exhibited significant cytotoxicity with respect to the uninjected ones against MCF-7; however, Vero cells showed no cytotoxicity. The IC50 was 106 ± 2.9 and 388 ± 9.2 µg/mL for the hemolymphs of injected larvae at 4 and 8 h, respectively, while the control larval hemolymph revealed the IC50 of >500 µg/mL. For mechanistic anticancer evaluation, concentrations of 30, 60, and 100 µg/mL of curcumin-injected larval hemolymphs were examined. A significant G2/M cell cycle arrest was observed, confirming the anti-proliferative properties of hemolymphs over the tested concentrations. The MdCecA transcripts were significantly (p < 0.05) upregulated at 4 and 8 h post-injection, while a significant downregulation was observed after 24 h. Cecropin quantification by LC−MS revealed that MdCecA peptides have the highest expression in the hemolymph of the treated larvae at 8 h relative to the control group. The upregulation of cecropin expression at mRNA and protein levels may be attributed to the curcumin stimulation and linked to the increased cytotoxicity toward the cancer cell line. In conclusion, the results suggest that the apoptotic and anti-proliferative effects of M. domestica hemolymph on MCF-7 cells following the curcumin injection can be used as a natural candidate in future pharmaceutical industries.


Assuntos
Chlorocebus aethiops , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA