Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 198: 110851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182394

RESUMO

The current study focuses on the production of GdAl3(BO3)4 (GAB) phosphors using gel combustion. X-ray diffraction (XRD) and thermoluminescent (TL) methods were used to investigate the structural and thermoluminescence (TL) features of the samples. XRD results revealed that GAB phosphors were crystallized in a rhombohedral crystal system. TL experimental data exhibited an unusual heating rate behaviour, which was explained by the semi-localized transition model, and this provides valuable insight into the properties of the GAB sample. Beta-irradiated GAB hosts exhibit two primary peaks at 106 °C and 277 °C on their TL glow curves. We have employed a variety of heating rates (VHRs), TM-Tstop method, and computerized glow curve deconvolution (CGCD) techniques. By using a combination of these techniques, we can identify the kinetic parameters of the GAB samples more accurately, including peak numbers, activation energy, and frequency factors. Both Tm-Tstop and CGCD techniques produce similar results in terms of trap numbers and trap depths. In the trap centers, electrons were trapped at 1.05 eV, 0.84 eV, 1.12 eV, 1.20 eV, 1.42 eV, 1.63 eV and 1.42 eV. There was a linear behaviour of GAB samples over a dose range of 0.1 Gy-10 Gy. GAB phosphors did not show any significant changes in TL response with repeated irradiation cycles, suggesting that it is a reliable radiation dosimeter. GAB is therefore a potential candidate for radiotherapy dose measurement based on these findings.


Assuntos
Elétrons , Calefação , Difração de Raios X , Cinética
2.
Appl Radiat Isot ; 185: 110257, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490590

RESUMO

This study reports cathodoluminescence (CL) and photoluminescence (PL) properties of undoped borate Ca3Y2B4O12 and Ca3Y2B4O12:x Dy3+ (x = 0.5, 1, 2, 3, 5, and 7) synthesized by gel combustion method. Micro-X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), CL and PL under electron beam and 359 nm pulse laser excitation, respectively were used to investigate characterization and luminescence studies of synthesized samples in the visible wavelength. As-prepared samples match the standard Ca3Y2BO4 phase that belongs to the orthorhombic system with space group Pnma (62) based on XRD results. Under electron beam excitation, this borate host shows a broad band emission from about 250 to 450 nm, peaked at 370 nm which is attributed to NBHOC. All as-prepared phosphors exhibited the characteristic PL and CL emissions of Dy3+ ions corresponding to 4F9/2→6HJ transitions when excited with laser at 359 nm. The CL emission spectra of phosphors were identical to those of the PL spectra. Concentration quenching occurred when the doping concentration was 1 mol% in both the CL and PL spectra. The underlying reason for the concentration quenching phenomena observed in the discrete orange-yellow emission peaked at 574 nm of Dy3+ ion-doped Ca3Y2B4O12 phosphor is also discussed. According to these data, we can infer that this new borate can be used as a yellow emitting phosphor in solid-state illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA