Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4095-4109, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850240

RESUMO

Polymer-homopolypeptide block copolymers are a class of bioinspired materials that combine the processability and stability of synthetic polymers with the biocompatibility and unique secondary structures of peptides, such as α-helices and ß-sheets. These properties make them ideal candidates for a wide variety of applications, for example, in the pharmaceutical field, where they are frequently explored as building blocks for polymeric micelle drug delivery systems. While homopolypeptide side chains can be furnished with an array of different moieties to impart the copolymers with desirable properties, such as stimulus responsivity, pyridine derivatives represent an underutilized functional group for this purpose. Additionally, the interplay between polypeptide side chain structure, secondary conformation, and micelle morphology is not yet well understood, particularly in the case of structural regioisomers. Therefore, in this work, a series of polymer-homopolypeptide copolymers were prepared from a poly(ethylene glycol)-b-poly(glutamic acid) (PEG-b-PGA) backbone, where the pendant carboxylic acid groups were covalently conjugated to a series of pyridine regioisomers by carbodiimide coupling. These pyridine regioisomers differed only in the position of the nitrogen heteroatom, ortho, meta or para, relative to the linking group, generating a series of PEG-b-poly(pyridinylmethyl glutamate) (PEG-b-PMG) copolymers. Following self-assembly of the copolymers in aqueous solutions, dynamic light scattering (DLS) revealed differences in micelle hydrodynamic diameter (Dh) (ranging from ∼60 to 120 nm), while transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealed distinctive morphologies ranging from ellipsoidal, to cylindrical, and disc-like, suggesting that subtle changes in positional isomers in the polypeptide block may influence the micelle structure. Analysis of the PEG-b-PMG copolymer micelles by circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that differences in the morphology were associated with changes in polypeptide secondary structure, which in turn was influenced by the position of the pyridine heteroatom. Overall, these findings contribute to the broader understanding of the relationship between polypeptide structure and micelle morphology and serve as useful insight for the rational design of polymer-polypeptide nanoparticles.


Assuntos
Micelas , Piridinas , Piridinas/química , Polietilenoglicóis/química , Peptídeos/química , Estrutura Secundária de Proteína , Estereoisomerismo , Isomerismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Polímeros/química
2.
J Pers Med ; 14(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39063977

RESUMO

Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.

3.
Int J Pharm ; 661: 124368, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925236

RESUMO

pH-responsive polymeric micelles have been extensively studied for nanomedicine and take advantage of pH differentials in tissues for the delivery of large doses of cytotoxic drugs at specific target sites. Despite significant advances in this area, there is a lack of versatile and adaptable strategies to render micelles pH-responsive that could be widely applied to different payloads and applications. To address this deficiency, we introduce the concept of oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive polymeric micelles as a highly effective approach with broad scope. Herein, we investigate the influence of the oligoelectrolyte, oligo(2-vinyl pyridine) (OVP), loading and polymer molecular weight on the pH-sensitivity, drug loading/release and cytotoxicity of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) micelles using copolymers with either short or long hydrophobic blocks (PEG4PCL4 and PEG10PCL10, respectively). The micelles were characterized as a function of pH (7.4 to 3.5). Dynamic light scattering (DLS) revealed narrow particle size distributions (PSDs) for both the blank and OVP-loaded micelles at pH 7.4. While OVP encapsulation resulted in an increase in the hydrodynamic diameter (Dh) (cf. blank micelles), a decrease in the pH below 6.5 led to a decrease in the Dh consistent with the ionization and release of OVP and core collapse, which were further supported by proton nuclear magnetic resonance (1H NMR) spectroscopy and UV-visible (UV-vis) spectrophotometry. The change in zeta potential (ζ) with pH for the OVP-loaded PEG4PCL4 and PEG10PCL10 micelles was different, suggesting that the location/distribution of OVP in the micelles is influenced by the polymer molecular weight. In general, co-encapsulation of drugs (doxorubicin (DOX), gossypol (GP), paclitaxel (PX) or 7-ethyl-10-hydroxycamptothecin (SN38)) and OVP in the micelles proceeded efficiently with high encapsulation efficiency percentages (EE%). In vitro release studies revealed the rapid, pH-triggered release of drugs from OVP-loaded PEG10PCL10 micelles within hours, with higher OVP loadings providing faster and more complete release. In comparison, no triggered release was observed for the OVP-loaded PEG4PCL4 micelles, implying a strong molecular weight dependency. In metabolic assays the drug- and OVP-loaded PEG10PCL10 micelles were found to result in significant enhancement of the cytotoxicity compared to drug-loaded micelles (no OVP) or other controls. Importantly, micelles with low OVP loadings were found to be nearly as effective as those with high OVP loadings. These results provide key insights into the tunability of the oligoelectrolyte-mediated approach for the effective formulation of pH-responsive micelles and pH-triggered drug release.


Assuntos
Sobrevivência Celular , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Poliésteres , Polietilenoglicóis , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Humanos , Poliésteres/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Paclitaxel/administração & dosagem , Paclitaxel/química , Piridinas/química , Piridinas/administração & dosagem , Etilenoglicóis , Lactonas
4.
ACS Appl Mater Interfaces ; 16(8): 9736-9748, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349780

RESUMO

Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Micelas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Doxorrubicina/química
5.
J Ovarian Res ; 17(1): 156, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068454

RESUMO

Genetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery. Here we report on the systematic analysis of public ribonucleic acid-sequencing (RNA-seq) gene expression data, which led to prioritisation of 13 GPCRs as candidates with frequent overexpression in ovarian cancer tissues. Subsequently, primary ovarian cancer cells derived from ascites and ovarian cancer cell lines were used to confirm frequent gene expression for the selected GPCRs. However, the expression levels showed high variability within our selection of samples, therefore, supporting and emphasising the need for the future development of case-to-case personalised targeting approaches.


Assuntos
Nanomedicina , Neoplasias Ovarianas , Receptores Acoplados a Proteínas G , Análise de Sequência de RNA , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Nanomedicina/métodos , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA