Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 192-201, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37966049

RESUMO

A series of halogen-substitute carbazole TTM radicals was synthesized. The effect of halogen substituents on radical luminescence was systematically evaluated. It was found that the well-known heavy atom effect does not work in the emission of radicals and that halogen substitution of the donor carbazole can change the HOMO and alter the absorption and emission wavelengths. In addition, the photostability was found to be improved with respect to TTM but not significantly different from that of closed-shell fluorescent molecules.

2.
Angew Chem Int Ed Engl ; 62(28): e202302550, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36951925

RESUMO

A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure-property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627 nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.

3.
Angew Chem Int Ed Engl ; 59(31): 12674-12679, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338404

RESUMO

Microcrystallites are promising minute mirrorless laser sources. A variety of luminescent organic compounds have been exploited along this line, but dendrimers have been inapplicable owing to their fragility and extremely poor crystallinity. Now, a dendrimer family that overcomes these difficulties is presented. First-, second-, and third-generation carbazole (Cz) dendrimers with a carbon-bridged oligo(phenylenevinylene) (COPV2) core (GnCOPV2, n=1-3) assemble to form microcrystals. The COPV2 cores align uni/bidirectionally in the crystals while the Cz units in G2- and G3COPV2 align omnidirectionally. The dendrons work as light-harvesting antennas that absorb non-polarized light and transfer it to the COPV2 core, from which a polarized luminescence radiates. Furthermore, these crystals act as laser resonators, where the lasing thresholds are strongly coupled with the crystal morphology and the orientation of COPV2, which is in contrast with the conventional amorphous dendrimers.

7.
Angew Chem Int Ed Engl ; 56(13): 3570-3574, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28225169

RESUMO

By the covalent linkage of two bent bisanthracene amphiphiles with a biphenyl spacer bearing hydrophilic pendants, we synthesized a new molecular clip with a C-shaped conformation. The molecular clip provides an acyclic, open cavity surrounded by four anthracene panels in water. In contrast to previous clip- and tweezers-like compounds as well as cage-shaped compounds, the C-shaped polyaromatic cavity displays unusual wide-ranging capturing abilities toward not only planar perylene-based pigments and cylindrical single-walled carbon nanotubes but also highly branched macromolecules (carbazole dendrimers).

8.
Angew Chem Int Ed Engl ; 54(19): 5677-82, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25753430

RESUMO

Recently, thermally activated delayed fluorescence (TADF) materials have received increasing attention as effective emitters for organic light-emitting diodes (OLEDs). However, most of them are usually employed as dopants in a host material. In this report, carbazole dendrimers with a triphenyl-s-triazine core are reported, which are the first solution-processable, non-doped, high-molecular-weight TADF materials. The dendrimers were obtained by a new and facile synthetic route using the tert-butyldimethylsilyl moiety as a protecting group. All dendrimers showed TADF in toluene. Measurements of the temperature-dependent luminescence lifetime revealed that spin-coated neat films also showed TADF with moderate quantum yields. OLED devices incorporating these dendrimers as spin-coated emitting layers gave external quantum efficiencies of up to a 3.4 %, which suggests that this device is harvesting triplet excitons. This result indicates that carbazole dendrimers with attached acceptors are potential TADF materials owing to their polarized electronic structure (with HOMO-LUMO separation).

9.
J Mater Chem B ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913346

RESUMO

Organic luminescent radicals are a new class of materials with potential applications not only in light-emitting devices but also in the biochemistry field. New tris(2,4,6-trichlorophenyl)methyl (TTM) radicals with alkoxy-substituted carbazole donors were synthesized and characterized. PEG-substituted carbazole-TTM was found to be water-soluble. The water-soluble TTM radical aqueous solution showed fluorescence at 777 nm and the ability to shorten the longitudinal relaxation time (T1) of water. The concept of water-soluble luminescent radicals is expected to be used to develop a potential fluorescence and MR dual-use imaging moiety.

10.
J Am Chem Soc ; 135(35): 13089-95, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23902457

RESUMO

A relationship between the size of metal particles and their catalytic activity has been established over a nanometer scale (2-10 nm). However, application on a subnanometer scale (0.5-2 nm) is difficult, a possible reason being that the activity no longer relies on the size but rather the geometric structure as a cluster (or superatomic) compound. We now report that the catalytic activity for the oxygen reduction reaction (ORR) significantly increased when only one atom was removed from a magic number cluster composed of 13-platinum atoms (Pt13). The synthesis with an atomic-level precision was successfully achieved by using a dendrimer ligand as the macromolecular template strictly defining the number of metal atoms. It was quite surprising that the Pt12 cluster exhibited more than 2-fold catalytic activity compared with that of the Pt13 cluster. ESI-TOF-mass and EXAFS analyses provided information about the structures. These analyses suggested that the Pt12 has a deformed coordination, while the Pt13 has a well-known icosahedral atomic coordination as part of the stable cluster series. Theoretical analyses based on density functional theory (DFT) also supported this idea. The present results suggest potential activity of the metastable clusters although they have been "missing" species in conventional statistical synthesis.

11.
Chem Commun (Camb) ; 59(23): 3459-3462, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36866754

RESUMO

Four types of carbazole dendrimers were applied as modification molecules of Au surfaces to improve carbon dioxide electroreduction. The reduction properties depended on the molecular structures: the highest activity and selectivity to CO was achieved by 9-phenylcarbazole, probably caused by the charge transfer from the molecule to Au.

12.
Chem Sci ; 13(20): 5813-5817, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685784

RESUMO

Synthesizing metal clusters with a specific number of atoms on a preparative scale for studying advanced properties is still a challenge. The dendrimer templated method is powerful for synthesizing size or atomicity controlled nanoparticles. However, not all atomicity is accessible with conventional dendrimers. A new tailor-made phenylazomethine dendrimer (DPA) with a limited number of coordination sites (n = 16) and a non-coordinating large poly-phenylene shell was designed to tackle this problem. The asymmetric dendron and adamantane core four substituted dendrimer (PPDPA16) were successfully synthesized. The coordination behavior confirmed the accumulation of 16 metal Lewis acids (RhCl3, RuCl3, and SnBr2) to PPDPA16. After the reduction of the complex, low valent metal nanoparticles with controlled size were obtained. The tailor-made dendrimer is a promising approach to synthesize a variety of metal clusters with desired atomicity.

13.
Chem Commun (Camb) ; 58(97): 13443-13446, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36373670

RESUMO

Stable organic luminescent radicals have attracted much attention, but their stability under light irradiation is not yet satisfactory. New luminescent radicals (TTMs) based on terminal benzene ring modified carbazole donors were synthesized and evaluated. Their photostability (half-life under continuous laser irradiation) has improved by 1 order of magnitude compared to simple carbazole donors. This is a new molecular design strategy to improve the photostability of luminescent radicals without reducing other photophysical properties.

14.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362728

RESUMO

Microscopic observation of single molecules is a rapidly expanding field in chemistry and differs from conventional characterization techniques that require a large number of molecules. One of such form of single-molecule microscopy is high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which is especially suitable for coordination compounds because of its atomic number-dependent contrast. However, to date, single-molecule observations using HAADF-STEM has limited to simple planar molecules. In the present study, we demonstrate a direct structural investigation of nonplanar dendronized polynuclear Ir complexes with subnanometer resolution using Ir as an atomic label. Decreasing the electron dose to the dendrimer complexes is critical for the single-molecule observation. A comparison with simulated STEM images of conformational isomers is performed to determine the most plausible conformation. Our results enlarge the potential of electron microscopic observation to realize structural analysis of coordination macromolecules, which has been impossible with conventional methods.

15.
Chem Commun (Camb) ; 57(95): 12840-12843, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787135

RESUMO

A carbonophosphate compound of Li2.72Na0.31MnPO4CO3 was synthesized via ion exchange. The initial discharge capacity of Li2.72Na0.31MnPO4CO3 in 15 molal (or 15 m) LiTFSI was 110 mA h g-1 at 2 mA cm-2 (∼0.5C). Due to the decomposition of Li2.72Na0.31MnPO4CO3, the capacity retention degraded to 64% after 100 cycles.

16.
Commun Chem ; 3(1): 118, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36703455

RESUMO

Vapochromic behaviour of porous crystals is beneficial for facile and rapid detection of gaseous molecules without electricity. Toward this end, tailored molecular designs have been established for metal-organic, covalent-bonded and hydrogen-bonded frameworks. Here, we explore the hydrochromic chemistry of a van der Waals (VDW) porous crystal. The VDW porous crystal VPC-1 is formed from a novel aromatic dendrimer having a dibenzophenazine core and multibranched carbazole dendrons. Although the constituent molecules are connected via VDW forces, VPC-1 maintains its structural integrity even after desolvation. VPC-1 exhibits reversible colour changes upon uptake/release of water molecules due to the charge transfer character of the constituent dendrimer. Detailed structural analyses reveal that the outermost carbazole units alone are mobile in the crystal and twist simultaneously in response to water vapour. Thermodynamic analysis suggests that the sigmoidal water sorption is induced by the affinity alternation of the pore surface from hydrophobic to hydrophilic.

17.
J Am Chem Soc ; 131(6): 2244-51, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19175324

RESUMO

A new synthetic route for carbazole dendrimers was discovered using the copper-catalyzed N-arylation reaction. This synthetic route allowed synthesizing the fourth generation carbazole dendrimer and several derivatives for the first time. The crystal structure, Mark-Houwink-Sakurada plots, and UV-vis and fluorescence studies showed that the dendritic carbazole backbone has a rigid and highly twisted structure. From the measurement of the redox potential of the ferrocene derivatives, the IR spectra of the benzophenone derivatives, and complexation behavior of the phenylazomethine derivatives, the inductive electron-withdrawing effect of the carbazole dendron was revealed. This suggested that the summation of this electron withdrawal from each layer may produce a potential gradient such that the outer layer is electron-rich and the inner layer is electron-poor in the carbazole dendron. By assignment of the (1)H and (13)C NMR spectra of the dendron, the existence of this kind of potential gradient was proved. Overall, these data show the pi-polarization substituent effect of the carbazole unit, and their summation determines the potential gradient in the repeating dendritic structure of the carbazole dendrimer.

18.
Nanoscale ; 10(42): 19818-19824, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30334558

RESUMO

Current-voltage characteristics of single molecule junctions are governed both by the energy level alignment of molecular orbitals with respect to the Fermi level of the electrodes and by the hybridization of electronic structures at the interface between the molecule and the electrodes. While there have been many studies on tuning the former, only a few works intended to control the latter. In the present study, we demonstrate that molecular junctions based on carbazole oligomers showed a current rectification behavior due to asymmetric-symmetric control of electronic hybridization between the molecule and electrodes at the both terminals. The carbazole oligomers originally showed an asymmetric molecular orbital and, hence, electronic hybridization with the electrodes because of the electric dipole moment. Symmetric electronic hybridization was achieved when the applied electric field between electrodes deformed molecular orbital to be symmetric. This is a novel way to control charge transport in single-molecule junctions.

19.
ACS Appl Mater Interfaces ; 10(39): 33343-33352, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30187748

RESUMO

A series of second-generation carbazole-benzophenone dendrimer substituted by several functional groups at terminal positions (subG2B) was investigated toward a thermally activated delayed fluorescence (TADF) emitter for nondoped emissive layer (EML) application in a solution-processed organic light-emitting diode (OLED). Substitution was found to dramatically alter the photophysical properties of the dendritic TADF emitters. The introduction of tert-butyl and phenyl group endows the subG2Bs with aggregation-induced emission enhancement character by suppression of internal conversion in singlet excited states. In the meantime, the introduction of a methoxy group resulted in aggregation-caused quenching character. The device performance of the OLED, where subG2B neat films were incorporated as nondoped EMLs, was found to be highly enhanced by adopting fully solution-processed organic multilayer architecture in comparison to the devices with a vacuum-deposited electron transporting layer (ETL), achieving a maximum external quantum efficiency of 17.0%. Such improvement was attributable to the improved carrier balance via intermixing at solution-processed EML/ETL interfaces. It was also found that the post-thermal annealing of the OLED at appropriate temperatures could be beneficial to enhance OLED performance by promoting the intermixing EML/ETL interface to some extent. Our findings emphasize the potential utility of dendritic TADF emitters in the solution-processed TADF-OLED and increase the importance to manipulate dendrimer/small molecule interfaces.

20.
Chem Commun (Camb) ; 54(41): 5209-5212, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29722374

RESUMO

Anisotropic dendrimers with bipolar shapes were systematically obtained using a heteroleptic metal-organic polyhedron (MOP) as a robust core scaffold. The structure of one of these polyhedral shapes was unambiguously determined by single-crystal X-ray analysis, which revealed that the bulky dendrons converge to both axial positions of the heteroleptic MOP core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA