Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 533(7604): 481-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27144355

RESUMO

Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.


Assuntos
Antidepressivos/metabolismo , Antidepressivos/farmacologia , Ketamina/análogos & derivados , Ketamina/metabolismo , Animais , Antidepressivos/efeitos adversos , Feminino , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Camundongos , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 116(11): 5160-5169, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796190

RESUMO

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) is a putative fast-acting antidepressant candidate. Although inhibition of NMDA-type glutamate receptors (NMDARs) is one mechanism proposed to underlie ketamine's antidepressant and adverse effects, the potency of (2R,6R)-HNK to inhibit NMDARs has not been established. We used a multidisciplinary approach to determine the effects of (2R,6R)-HNK on NMDAR function. Antidepressant-relevant behavioral responses and (2R,6R)-HNK levels in the extracellular compartment of the hippocampus were measured following systemic (2R,6R)-HNK administration in mice. The effects of ketamine, (2R,6R)-HNK, and, in some cases, the (2S,6S)-HNK stereoisomer were evaluated on the following: (i) NMDA-induced lethality in mice, (ii) NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 field of mouse hippocampal slices, (iii) NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and NMDA-evoked currents in CA1 pyramidal neurons of rat hippocampal slices, and (iv) recombinant NMDARs expressed in Xenopus oocytes. While a single i.p. injection of 10 mg/kg (2R,6R)-HNK exerted antidepressant-related behavioral and cellular responses in mice, the ED50 of (2R,6R)-HNK to prevent NMDA-induced lethality was found to be 228 mg/kg, compared with 6.4 mg/kg for ketamine. The 10 mg/kg (2R,6R)-HNK dose generated maximal hippocampal extracellular concentrations of ∼8 µM, which were well below concentrations required to inhibit synaptic and extrasynaptic NMDARs in vitro. (2S,6S)-HNK was more potent than (2R,6R)-HNK, but less potent than ketamine at inhibiting NMDARs. These data demonstrate the stereoselectivity of NMDAR inhibition by (2R,6R;2S,6S)-HNK and support the conclusion that direct NMDAR inhibition does not contribute to antidepressant-relevant effects of (2R,6R)-HNK.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Concentração Inibidora 50 , Ketamina/administração & dosagem , Ketamina/química , Masculino , Camundongos , N-Metilaspartato/metabolismo , Subunidades Proteicas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Xenopus laevis
3.
Pharmacol Rev ; 70(3): 621-660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29945898

RESUMO

Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.


Assuntos
Analgésicos/farmacologia , Anestésicos/farmacologia , Antidepressivos/farmacologia , Ketamina/análogos & derivados , Ketamina/farmacologia , Analgésicos/uso terapêutico , Anestésicos/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Humanos , Ketamina/uso terapêutico
4.
J Pharmacol Exp Ther ; 375(1): 115-126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759369

RESUMO

Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.


Assuntos
Antídotos/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Galantamina/uso terapêutico , Hipocampo/efeitos dos fármacos , Intoxicação por Organofosfatos/prevenção & controle , Soman/toxicidade , Acetilcolinesterase/sangue , Administração Oral , Animais , Antídotos/administração & dosagem , Área Sob a Curva , Galantamina/administração & dosagem , Galantamina/sangue , Hipocampo/patologia , Dose Letal Mediana , Macaca fascicularis , Masculino , Intoxicação por Organofosfatos/enzimologia
6.
J Neurochem ; 142 Suppl 2: 162-177, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791702

RESUMO

Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Acetilcolinesterase/metabolismo , Clorpirifos/farmacologia , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Síndromes Neurotóxicas/tratamento farmacológico , Acetilcolina/metabolismo , Animais , Humanos
7.
J Pharmacol Exp Ther ; 350(2): 313-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907067

RESUMO

The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.


Assuntos
Modelos Animais , Intoxicação por Organofosfatos/complicações , Animais , Ansiedade/induzido quimicamente , Eletroencefalografia/efeitos dos fármacos , Cobaias , Humanos , Dose Letal Mediana , Aprendizagem em Labirinto/efeitos dos fármacos , Compostos Organofosforados/toxicidade
8.
Neuropharmacology ; 239: 109684, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549771

RESUMO

Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 µM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 µM. Atropine (1 µM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 µM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 µM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.


Assuntos
Acetilcolinesterase , Triexifenidil , Ratos , Animais , Triexifenidil/farmacologia , Ratos Sprague-Dawley , Acetilcolinesterase/farmacologia , Transmissão Sináptica , Hipocampo , Receptores Muscarínicos , Derivados da Atropina/farmacologia , Convulsões
9.
J Pharmacol Exp Ther ; 341(2): 500-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344459

RESUMO

Impaired α7 nicotinic acetylcholine receptor (nAChR) function and GABAergic transmission in the hippocampus and elevated brain levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the kynurenine pathway, are key features of schizophrenia. KYNA acts as a noncompetitive antagonist with respect to agonists at both α7 nAChRs and N-methyl-D-aspartate receptors. Here, we tested the hypothesis that in hippocampal slices tonically active α7 nAChRs control GABAergic transmission to CA1 pyramidal neurons and are sensitive to inhibition by rising levels of KYNA. The α7 nAChR-selective antagonist α-bungarotoxin (α-BGT; 100 nM) and methyllycaconitine (MLA; 10 nM), an antagonist at α7 and other nAChRs, reduced by 51.3 ± 1.3 and 65.2 ± 1.5%, respectively, the frequency of GABAergic postsynaptic currents (PSCs) recorded from CA1 pyramidal neurons. MLA had no effect on miniature GABAergic PSCs. Thus, GABAergic synaptic activity in CA1 pyramidal neurons is maintained, in part, by tonically active α7 nAChRs located on the preterminal region of axons and/or the somatodendritic region of interneurons that synapse onto the neurons under study. L-Kynurenine (20 or 200 µM) or KYNA (20-200 µM) suppressed concentration-dependently the frequency of GABAergic PSCs; the inhibitory effect of 20 µM L-kynurenine had an onset time of approximately 35 min and could not be detected in the presence of 100 nM α-BGT. These results suggest that KYNA levels generated from 20 µM kynurenine inhibit tonically active α7 nAChR-dependent GABAergic transmission to the pyramidal neurons. Disruption of nAChR-dependent GABAergic transmission by mildly elevated levels of KYNA can be an important determinant of the cognitive deficits presented by patients with schizophrenia.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Cinurênico/metabolismo , Receptores Nicotínicos/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Bungarotoxinas/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Técnicas In Vitro , Cinurenina/farmacologia , Masculino , Antagonistas Nicotínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7
10.
J Pharmacol Exp Ther ; 337(3): 572-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21270133

RESUMO

In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of L-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2-7 h) of rat hippocampal slices with kynurenine (200 µM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(-)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 µM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-D-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 µM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA.


Assuntos
Envelhecimento , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Interneurônios/efeitos dos fármacos , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores Nicotínicos/metabolismo , Adulto , Animais , Bicuculina/farmacologia , Colina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Técnicas In Vitro , Interneurônios/fisiologia , Masculino , Antagonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
11.
J Pharmacol Exp Ther ; 334(3): 1051-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20554906

RESUMO

Galantamine has emerged as a potential antidote to prevent the acute toxicity of organophosphorus (OP) compounds. Changes in inhibitory GABAergic activity in different brain regions can contribute to both induction and maintenance of seizures in subjects exposed to the OP nerve agent soman. Here, we tested the hypothesis that galantamine can prevent immediate and delayed effects of soman on hippocampal inhibitory synaptic transmission. Spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1 h, 24 h, or 6 to 9 days after the injection of guinea pigs with saline (0.5 ml/kg i.m.), 1xLD(50) soman (26.3 microg/kg s.c.), galantamine (8 mg/kg i.m.), or galantamine at 30 min before soman. Soman-challenged animals that were not pretreated showed mild, moderate, or severe signs of acute intoxication. At 1 h after the soman injection, the mean IPSC amplitude recorded from slices of mildly intoxicated animals and the mean IPSC frequency recorded from slices of severely intoxicated animals were larger and lower, respectively, than those recorded from slices of control animals. Regardless of the severity of the acute toxicity, at 24 h after the soman challenge the mean IPSC frequency was lower than that recorded from slices of control animals. At 6 to 9 days after the challenge, the IPSC frequency had returned to control levels, whereas the mean IPSC amplitude became larger than control. Pretreatment with galantamine prevented soman-induced changes in IPSCs. Counteracting the effects of soman on inhibitory transmission can be an important determinant of the antidotal effectiveness of galantamine.


Assuntos
Antídotos , Inibidores da Colinesterase/toxicidade , Galantamina/farmacologia , Hipocampo/efeitos dos fármacos , Soman/antagonistas & inibidores , Soman/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Animais , Interpretação Estatística de Dados , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Cobaias , Técnicas In Vitro , Dose Letal Mediana , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
12.
J Recept Signal Transduct Res ; 30(6): 469-83, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062106

RESUMO

Galantamine is an approved drug treatment for Alzheimer's disease. Initially identified as a weak cholinesterase inhibitor, we have established that galantamine mainly acts as an 'allosterically potentiating ligand (APL)' of nicotinic acetylcholine receptors (nAChR). Meanwhile other 'positive allosteric modulators (PAM)' of nAChR channel activity have been discovered, and for one of them a binding site within the transmembrane domain has been proposed. Here we show, by performing site-directed mutagenesis studies of ectopically expressed chimeric chicken α7/mouse 5-hydroxytryptamine 3 receptor-channel complex, in combination with whole-cell current measurements, in the presence and absence of galantamine, that the APL binding site is different from the proposed PAM binding site. We demonstrate that residues T197, I196, and F198 of ß-strand 10 represent major elements of the galantamine binding site. Residue K123, earlier suggested as being 'close to' the APL binding site, is not part of this site but rather appears to play a role in coupling of agonist binding to channel opening and closing. Our data confirm our earlier results that the galantamine binding site is different from the ACh binding site. Both sites are in close proximity and hence may influence each other in a synergistic fashion. Other interesting areas identified in the present study are a 'hinge' region around and containing residues F122, K123, and K143 possibly being involved in relaying the signal of agonist binding to gating of the transmembrane channel, and a 'folding centre', with P119 as the dominating residue, that crucially positions the agonist binding site with respect to the hinge region.


Assuntos
Inibidores da Colinesterase/metabolismo , Galantamina/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Relação Dose-Resposta a Droga , Humanos , Ligantes , Camundongos , Modelos Moleculares , Técnicas de Patch-Clamp , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
13.
Neuropharmacology ; 180: 108271, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814088

RESUMO

For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.


Assuntos
Inibidores da Colinesterase/efeitos adversos , Inseticidas/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Compostos Organofosforados/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Feminino , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico
14.
Brain Sci ; 10(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545593

RESUMO

This study used in vivo magnetic resonance imaging (MRI) to identify age dependent brain structural characteristics in Dunkin Hartley guinea pigs. Anatomical T2-weighted images, diffusion kurtosis (DKI) imaging, and T2 relaxometry measures were acquired from a cohort of male guinea pigs from postnatal day (PND) 18-25 (juvenile) to PND 46-51 (adolescent) and PND 118-123 (young adult). Whole-brain diffusion measures revealed the distinct effects of maturation on the microstructural complexity of the male guinea pig brain. Specifically, fractional anisotropy (FA), as well as mean, axial, and radial kurtosis in the corpus callosum, amygdala, dorsal-ventral striatum, and thalamus significantly increased from PND 18-25 to PND 118-123. Age-related alterations in DKI measures within these brain regions paralleled the overall alterations observed in the whole brain. Age-related changes in FA and kurtosis in the gray matter-dominant parietal cerebral cortex and dorsal hippocampus were less pronounced than in the other brain regions. The regional data analysis revealed that between-age changes of diffusion kurtosis metrics were more pronounced than those observed in diffusion tensor metrics. The age-related anatomical differences reported here may be important determinants of the age-dependent neurobehavior of guinea pigs in different tasks.

15.
Neurotoxicol Teratol ; 81: 106914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32652103

RESUMO

High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.


Assuntos
Encéfalo/efeitos dos fármacos , Inseticidas/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Inibidores da Colinesterase/farmacologia , Feminino , Cobaias , Malation/farmacologia , Masculino , Síndromes Neurotóxicas/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Aprendizagem Espacial/efeitos dos fármacos
16.
Neuropsychopharmacology ; 45(2): 426-436, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216563

RESUMO

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) retains the rapid and sustained antidepressant-like actions of ketamine, but is spared its dissociative-like properties and abuse potential. While (2R,6R)-HNK is thought to exert its antidepressant-like effects by potentiating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission, it is unknown how it exerts this effect. The acute synaptic effects of (2R,6R)-HNK were examined by recording field excitatory postsynaptic potentials (fEPSPs) and miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal slices. (2R,6R)-HNK bath application caused a rapid and persistent potentiation of AMPAR-mediated Schaffer collateral (SC)-CA1 fEPSPs in slices derived from male and female rats. The (2R,6R)-HNK-induced potentiation occurred independent of N-methyl-D-aspartate receptor (NMDAR) activity, was accompanied by a concentration-dependent decrease in paired pulse ratios, and was occluded by raising glutamate release probability. In additon, in the presence of tetrodotoxin, (2R,6R)-HNK increased the frequency, but not amplitude, of mEPSC events, confirming a presynaptic site of action that is independent of glutamatergic network disinhibition. A dual extracellular recording configuration revealed that the presynaptic effects of (2R,6R)-HNK were synapse-selective, occurring in CA1-projecting SC terminals, but not in CA1-projecting temporoammonic terminals. Overall, we found that (2R,6R)-HNK enhances excitatory synaptic transmission in the hippocampus through a concentration-dependent, NMDAR-independent, and synapse-selective increase in glutamate release probability with no direct actions on AMPAR function. These findings provide novel insight regarding (2R,6R)-HNK's acute mechanism of action, and may inform novel antidepressant drug mechanisms that could yield superior efficacy, safety, and tolerability.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Ketamina/análogos & derivados , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Masculino , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
17.
Psychopharmacology (Berl) ; 237(1): 219-230, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31686175

RESUMO

RATIONALE: Cognitive benefits of nicotinic acetylcholine receptor (nAChR) agonists are well established but have generally been of small magnitude and uncertain clinical significance. A way of raising the effect size may be to facilitate agonist-induced responses by co-administering a nAChR positive allosteric modulator (PAM). OBJECTIVE: The aim was to test whether galantamine, a PAM at several nAChR subtypes, can potentiate the cognitive-enhancing effects of nicotine. METHODS: Twenty-six adult never-smokers were treated, in a double-blind counterbalanced sequence, with nicotine (7 mg/24 h, transdermally) and galantamine (4 mg, p.o.) combined, nicotine alone, galantamine alone, and double placebo. A low dose of galantamine was chosen to minimize acetylcholinesterase inhibition, which was verified in blood assays. In each condition, participants were tested with three cognitive tasks. RESULTS: Nicotine significantly improved reaction time (RT) and signal detection in a visuospatial attention task and the Rapid Visual Information Processing Task. Galantamine did not modulate these effects. A trend toward RT reduction by galantamine correlated with acetylcholinesterase inhibition. In a change detection task, there were no effects of nicotine or galantamine alone on accuracy or RT. However, both drugs combined acted synergistically to reduce RT. This effect was not associated with acetylcholinesterase inhibition. CONCLUSIONS: A pattern consistent with allosteric potentiation of nicotine effects by galantamine was observed on one of six performance measures. This may reflect specific nAChR subtype involvement, or additional pharmacological actions of galantamine may have overshadowed similar interactions on other measures. The finding suggests that allosteric potentiation of nAChR agonist-induced cognitive benefits is possible in principle.


Assuntos
Inibidores da Colinesterase/farmacologia , Cognição/efeitos dos fármacos , Galantamina/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Adulto , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/efeitos dos fármacos , Adulto Jovem
18.
J Pharmacol Exp Ther ; 328(2): 516-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18984651

RESUMO

This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Fatores Etários , Inibidores da Colinesterase/toxicidade , Compostos Organofosforados/toxicidade , Caracteres Sexuais , Acetilcolinesterase/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Cobaias , Masculino , Sarina/toxicidade , Soman/toxicidade
19.
J Pharmacol Exp Ther ; 328(1): 69-82, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18842705

RESUMO

The present study was designed to test the hypothesis that an acute in vivo treatment with reversible or irreversible acetylcholinesterase (AChE) inhibitors modifies the activities of nicotinic receptors (nAChRs) in hippocampal neurons. Here, whole-cell nicotinic responses were recorded from CA1 interneurons in hippocampal slices obtained from male guinea pigs at 1, 7, or 14 days after treatment with the irreversible AChE inhibitor, soman (1x LD(50) s.c.), and/or the reversible AChE inhibitor, galantamine (8 mg/kg i.m.). Naive animals were used as controls. Three types of nAChR responses, namely types IA, II, and III, which were mediated by alpha 7, alpha 4 beta 2, and alpha 3 beta 2 beta 4 nAChRs, respectively, could be recorded from the interneurons. The magnitude of alpha 7 nAChR currents was neuron-type dependent. Stratum radiatum interneurons (SRIs) with thick initial dendrites had the largest alpha 7 nAChR currents. Acute challenge with soman caused sustained reduction of type IA current amplitudes recorded from stratum oriens interneurons and increased the ratio of acetylcholine- to choline-evoked current amplitudes recorded from SRIs. In guinea pigs that developed long-lasting convulsions after the soman challenge, there was a sustained reduction of alpha 3 beta 2 beta 4 nAChR responses. Acute treatment with galantamine had no effect on type IA or III responses, whereas it decreased the incidence of type II currents. Pretreatment of the guinea pigs with galantamine prevented the suppressive effect of soman on type III responses. The neuron type-specific changes in nAChR activity induced by soman, some of which could be prevented by galantamine, may contribute to the maintenance of pathological rhythms in the hippocampal neuronal network.


Assuntos
Inibidores da Colinesterase/toxicidade , Galantamina/toxicidade , Hipocampo/fisiologia , Neurônios/fisiologia , Receptores Nicotínicos/fisiologia , Soman/toxicidade , Animais , Cobaias , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Análise de Sobrevida
20.
J Pharmacol Exp Ther ; 331(3): 1014-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19741148

RESUMO

Galantamine, a centrally acting cholinesterase (ChE) inhibitor and a nicotinic allosteric potentiating ligand used to treat Alzheimer's disease, is an effective and safe antidote against poisoning with nerve agents, including soman. Here, the effectiveness of galantamine was compared with that of the centrally active ChE inhibitors donepezil, rivastigmine, and (+/-)huperzine A as a pre- and/or post-treatment to counteract the acute toxicity of soman. In the first set of experiments, male prepubertal guinea pigs were treated intramuscularly with one of the test drugs and 30 min later challenged with 1.5 x LD(50) soman (42 microg/kg s.c.). All animals that were pretreated with galantamine (6-8 mg/kg), 3 mg/kg donepezil, 6 mg/kg rivastigmine, or 0.3 mg/kg (+/-)huperzine A survived the soman challenge, provided that they were also post-treated with atropine (10 mg/kg i.m.). However, only galantamine was well tolerated. In subsequent experiments, the effectiveness of specific treatment regimens using 8 mg/kg galantamine, 3 mg/kg donepezil, 6 mg/kg rivastigmine, or 0.3 mg/kg (+/-)huperzine A was compared in guinea pigs challenged with soman. In the absence of atropine, only galantamine worked as an effective and safe pretreatment in animals challenged with 1.0 x LD(50) soman. Galantamine was also the only drug to afford significant protection when given to guinea pigs after 1.0 x LD(50) soman. Finally, all test drugs except galantamine reduced the survival of the animals when administered 1 or 3 h after the challenge with 0.6 or 0.7 x LD(50) soman. Thus, galantamine emerges as a superior antidotal therapy against the toxicity of soman.


Assuntos
Antídotos/uso terapêutico , Substâncias para a Guerra Química/intoxicação , Galantamina/uso terapêutico , Indanos/uso terapêutico , Fenilcarbamatos/uso terapêutico , Piperidinas/uso terapêutico , Sesquiterpenos/uso terapêutico , Soman/intoxicação , Acetilcolinesterase/metabolismo , Alcaloides , Animais , Antídotos/administração & dosagem , Substâncias para a Guerra Química/química , Donepezila , Relação Dose-Resposta a Droga , Galantamina/administração & dosagem , Cobaias , Indanos/administração & dosagem , Dose Letal Mediana , Masculino , Fenilcarbamatos/administração & dosagem , Piperidinas/administração & dosagem , Intoxicação/enzimologia , Intoxicação/prevenção & controle , Rivastigmina , Sesquiterpenos/administração & dosagem , Soman/química , Fatores de Tempo , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA