Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt B): 112072, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562485

RESUMO

To control the evolution of a pandemic such as COVID-19, knowing the conditions under which the pathogen is being transmitted represents a critical issue, especially when implementing protection strategies such as social distancing and wearing face masks. For viruses and bacteria that spread via airborne and/or droplet pathways, this requires understanding how saliva droplets evolve over time after their expulsion by speaking or coughing. Within this context, the transition from saliva droplets to solid residues, due to water evaporation, is studied here both experimentally, considering the saliva from 5 men and 5 women, and via numerical modeling to accurately predict the dynamics of this process. The model assumes saliva to be a binary water/salt mixture and is validated against experimental results using saliva droplets that are suspended in an ultrasound levitator. We demonstrate that droplets with an initial diameter smaller than 21 µm will produce a solid residue that would be considered an aerosol of <5 µm diameter in less than 2 s (for any relative humidity less than 80% and/or any temperature greater than 20°C). Finally, the model developed here accounts for the influence of the saliva composition, relative humidity and ambient temperature on droplet drying. Thus, the travel distance prior to becoming a solid residue can be deduced. We found that saliva droplets of initial size below 80 µm, which corresponds to the vast majority of speech and cough droplets, will become solid residues prior to touching the ground when expelled from a height of 160 cm.


Assuntos
COVID-19 , Saliva , Aerossóis , Humanos , SARS-CoV-2 , Fala
2.
Opt Express ; 29(2): 1048-1063, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726327

RESUMO

A time-resolving filtering technique developed to improve background suppression in Raman spectroscopy is presented and characterized. The technique enables separation of signal contributions via their polarization dependency by the addition of a waveplate to a normal measurement system and data post-processing. As a result, background interferences of broadband laser-induced fluorescence and incandescence, as well as flame luminosity and blackbody radiation, were effectively suppressed from Raman spectra. Experimental setting parameters of the method were investigated under well-controlled conditions to assess their impact on the background-filtering ability, and the overall trend was understood. The fluorescence background was effectively suppressed for all investigated settings of modulation period, number of accumulations, and recording duration, with the spectrum quality preserved after the filtering. For practical application, the method was tested for measurements in a sooting flame accompanied by a strong luminosity and interfering laser-induced background signals. The technique resulted in a 200-fold decrease of the background and allowed for quantitative analyses of concentrations and temperatures from the filtered data. Thus, the method shows strong potential to extend the applicability of Raman spectroscopy, in particular for in situ diagnostics under challenging experimental conditions.

3.
Opt Express ; 29(21): 34465-34476, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809236

RESUMO

In this work, the combustion behavior of seeded iron particles (d50 = 70 µm) in a laminar diffusion flame was studied in a modified Mckenna flat-flame burner. Two high speed cameras in stereo configuration allowed 3D position and 3D velocity measurements of burning iron particles as well as 3D evaluation of particle microexplosions. Microexplosive processes are important since it can affect both combustion stability and formation of product components. The observed microexplosions happened before particle extinction resulting in change of trajectories, velocities, radiation intensities and fragmentation into smaller particles. It was observed for the first time that fragments of these microexplosions tend to produce planar structures. A frequent release phenomenon was observed during the iron particle combustion using magnified thermal radiation imaging and high-speed shadowgraphy. This release phenomenon was indirectly confirmed with scanning electron microscopy of combust products, revealing multiple cracked particle shells and hollow structures. Black body radiation characteristics was observed indicating the release being in condensed phase and emission spectroscopy identified FeO as intermediate species during combustion. The observed release is believed to mainly consist of iron-oxide nanoparticles formed in the homogenous reaction between vapor iron and oxidizers.

4.
Opt Express ; 29(5): 7232-7246, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726229

RESUMO

Stray light is a known strong interference in spectroscopic measurements. Photons from high-intensity signals that are scattered inside the spectrometer, or photons that enter the detector through unintended ways, will be added to the spectrum as an interference signal. A general experimental solution to this problem is presented here by introducing a customized fiber for signal collection. The fiber-mount to the spectrometer consists of a periodically arranged fiber array that, combined with lock-in analysis of the data, is capable of suppressing stray light for improved spectroscopy. The method, which is referred to as fiber-based periodic shadowing, was applied to Raman spectroscopy in combustion. The fiber-based stray-light suppression method is implemented in an experimental setup with a high-power high-repetition-rate laser system used for Raman measurements in different room-temperature gas mixtures and a premixed flame. It is shown that the stray-light level is reduced by up to a factor of 80. Weak spectral lines can be distinguished, and therefore better molecular species identification, as well as concentration and temperature evaluation, were performed. The results show that the method is feasible and efficient in practical use and that it can be employed as a general tool for improving spectroscopic accuracy.

5.
Opt Express ; 28(7): 9572-9586, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225563

RESUMO

The behaviour and function of dynamic samples can be investigated using optical imaging approaches with high temporal resolution and multidimensional acquisition. Snapshot techniques have been developed in order to meet these demands, however they are often designed to study a specific parameter, such as spectral properties, limiting their applicability. Here we present and demonstrate a frequency recognition algorithm for multiple exposures (FRAME) snapshot imaging approach, which can be reconfigured to capture polarization, temporal, depth-of-focus and spectral information by simply changing the filters used. FRAME is implemented by splitting the emitted light from a sample into four channels, filtering the light and then applying a unique spatial modulation encoding before recombining all the channels. The multiplexed information is collected in a single exposure using a single detector and extracted in post processing of the Fourier transform of the collected image, where each channel image is located in a distinct region of the Fourier domain. The approach allows for individual intensity control in each channel, has easily interchangeable filters and can be used in conjunction with, in principle, all 2D detectors, making it a low cost and versatile snapshot multidimensional imaging technique.

6.
Sensors (Basel) ; 20(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423122

RESUMO

Measurement of acoustic waves from laser-induced breakdown has been developed as gas thermometry in combustion atmospheres. In the measurement, two laser-induced breakdown spots are generated and the local gas temperature between these two spots is determined through the measurement of the sound speed between them. In the previous study, it was found that the local gas breakdown can introduce notable system uncertainty, about 5% to the measured temperature. To eliminate the interference, in present work, a new measurement procedure was proposed, where two individual laser pulses with optimized firing order and delay time were employed. With the new measurement procedure, the system uncertainty caused by local gas breakdown can be largely avoided and the temporal and spatial resolutions can reach up to 0.5 ms and 10 mm, respectively. The improved thermometry, dual-laser-induced breakdown thermometry (DLIBT), was applied to measure temperatures of hot flue gases provided by a multijet burner. The measured temperatures covering the range between 1000 K and 2000 K were compared with the ones accurately obtained through the two-line atomic fluorescence (TLAF) thermometry with a measurement uncertainty of ~3%, and a very good agreement was obtained.

7.
Anal Chem ; 91(16): 10849-10855, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31364841

RESUMO

Spectrally resolved ultraviolet (UV) absorption cross sections of SO2 in combustion environments at temperatures from 1120 to 1950 K were measured for the first time in well-controlled conditions through applying broad band UV absorption spectroscopy in specially designed one-dimensional laminar flat flames. The temperature was observed to have a significant effect on the absorption cross-section profiles at wavelength shorter than 260 nm, while at the longer wavelength side, the absorption cross-section profiles have much less dependence on temperature. The absorption cross section at 277.8 nm with a value of 0.68 × 10-18 cm2/molecule was suggested for the evaluation of the SO2 concentration because of the weak dependence on temperature. To make spatially resolved measurements, laser-induced fluorescence (LIF) of SO2 excited by a 266 nm laser was investigated. Spectrally resolved LIF signal was analyzed at different temperatures. The LIF signal showed strong dependence on temperature, which can potentially be used for temperature measurements. At elevated temperatures, spatially resolved LIF SO2 detection up to a few ppm sensitivity was achieved. Combining UV broad band absorption spectroscopy and LIF, highly sensitive and spatially resolved quantitative measurements of SO2 in the combustion environment can be achieved.

8.
Anal Chem ; 91(7): 4719-4726, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30835101

RESUMO

An understanding of potassium chemistry in energy conversion processes supports the development of complex biomass utilization with high efficiency and low pollutant emissions. Potassium exists mainly as potassium hydroxide (KOH), potassium chloride (KCl), and atomic potassium (K) in combustion and related thermochemical processes. We report, for the first time, the measurement of the ultraviolet (UV) absorption cross sections of KOH and KCl at temperatures between 1300 K and 1800 K, using a newly developed method. Using the spectrally resolved UV absorption cross sections, the concentrations of KOH and KCl were measured simultaneously. In addition, we measured the concentrations of atomic K using tunable diode laser absorption spectroscopy, both at 404.4 and 769.9 nm. The 404.4 nm line was utilized to expand the measurement dynamic range to higher concentrations. A constant amount of KCl was seeded into premixed CH4/air flames with equivalence ratios varied from 0.67 to 1.32, and the concentrations of KOH, KCl, and atomic K in the hot flue gas were measured nonintrusively. The results indicate that these techniques can provide comprehensive data for quantitative understanding of the potassium chemistry in biomass combustion/gasification.


Assuntos
Temperatura Alta , Hidróxidos/análise , Cloreto de Potássio/análise , Compostos de Potássio/análise , Gases/química , Espectrofotometria Ultravioleta
9.
Opt Express ; 27(18): 25656-25669, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510434

RESUMO

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH4/C2H4-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

10.
Opt Lett ; 44(9): 2374-2377, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042226

RESUMO

By aiming to establish single-ended standoff combustion diagnostics, bidirectional lasing emissions of atomic hydrogen at 656 nm wavelength have been generated via two-photon resonant excitation by focusing 205 nm femtosecond laser pulses into a premixed CH4/O2 flame. The forward lasing strength is approximately one order of magnitude stronger than that of the backward one, due to the geometry of traveling wave excitation over a 2-mm-long pencil-shaped gain volume and the short gain lifetime of 3.5 ps. The gain coefficient of hydrogen lasing was determined to approximate 52/cm. As for the underlying physics of hydrogen lasing, amplified spontaneous emission (ASE) occurs simultaneously with four-wave mixing (FWM), and ASE dominates in the forward direction, whereas the backward lasing is virtually only ASE.

11.
Opt Express ; 26(12): 14842-14858, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114790

RESUMO

A portable Lidar system developed for large-scale (~1-20 m) combustion diagnostics is described and demonstrated. The system is able to perform remote backscattering measurements with range and temporal resolution. The range resolution is obtained by sharply imaging a part of the laser beam onto a CMOS-array or ICCD detector. The large focal depth required to do this is attained by placing the laser beam, the collection optics and the detector in a so-called Scheimpflug configuration. Results from simulations of the range capabilities and range resolution of the system are presented and its temporal resolution is also discussed. Various applications, important for combustion diagnostics, are also demonstrated, including Rayleigh scattering thermometry, aerosol detection and laser-induced fluorescence measurements. These measurements have been carried out using various continuous-wave GaN diode lasers, emitting in the violet-blue (405 - 450 nm) wavelength regime. It is anticipated that Scheimpflug Lidar will provide a useful and versatile diagnostic tool for combustion research, not only for fundamental studies, but in particular for applications at industrial sites.

12.
Opt Lett ; 43(5): 1183-1186, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489811

RESUMO

We report on an observation of bi-directional 656 nm lasing action of atomic hydrogen in a premixed CH4/air flame induced by resonant femtosecond 205 nm two-photon excitation. In particular, the backward-propagating lasing pulse is characterized in the spatial and temporal domains for the sake of a single-ended diagnostic. Its picosecond-scale duration and smooth temporal profile enable spatially resolved detection of hydrogen atoms in the millimeter range, which is successfully demonstrated using two narrow welding flames.

13.
Opt Express ; 25(24): 30214-30228, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221053

RESUMO

In order to obtain more detailed characteristics and information in highly turbulent flames, for a better understanding of the transient behavior of eddies in such flames, a measurement technique with sufficient temporal resolution is requested. However, the probing of species distributions relevant in combustion (e.g. OH, CH2O) with ultra-high-speed laser diagnostics still remains a challenge. Nd:YAG clusters commercially available can generate only 4-8 pulses, although with high laser energy. Systems based on a diode-pumped solid-state Nd:YAG laser combined with a dye laser produce only about 100 µJ pulse energy at ultra-high repetition rates (≥50 kHz). Even more comprehensive information on the flame structure can be gained if simultaneous recording of multi-species is performed. In the present work, the development of the first ultra-high-speed diagnostic technique capable of simultaneous probing of hydroxyl radicals and formaldehyde distributions at a repetition rate of 50 kHz is outlined. This has been achieved by employing a burst laser pumped optical parametric oscillator system for the simultaneous detection of CH2O excited at 355 nm and OH-radicals excited at 283 nm, where the interference of scattering laser light can be avoided. The applicability of the proposed technique was demonstrated in a highly turbulent jet flame. Moreover, the presented improvement in terms of the number of consecutive images recorded with ultra-high-speed planar laser induced fluorescence imaging is significant. Due to the high temporal resolution, the movement of CH2O pocket enclosed by OH at the flame tip can be clearly captured. The transport velocity of the CH2O pocket was calculated and found to be in good agreement with previous LDV results.

14.
Opt Express ; 25(17): 20243-20257, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041707

RESUMO

Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A-X (0, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A-X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring the instantaneous length of the plasma column, the discharge voltage and the translational temperature, from which the electron temperature (Te) of the gliding arc discharge was estimated. The uncertainties of the translational, rotational, vibrational and electron temperatures were analyzed. The relations of these four different temperatures (Te>Tv>Tr >Tt) suggest a high-degree non-equilibrium state of the gliding arc discharge.

15.
Appl Phys B ; 123(12): 278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997853

RESUMO

A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of ~ 2.7% and precision of ~ 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

16.
Opt Express ; 23(23): 30414-20, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698520

RESUMO

Planar infrared visualization of species in flames is challenging due to the severe thermal radiation background and relatively weak fluorescence quantum yields from ro-vibration transitions. In this express, we report imaging of molecular species in a flame via an absorption-based coherent optical method, namely infrared polarization spectroscopy (IRPS). Single-shot, planar imaging of hydrogen fluoride (HF) has been achieved in a premixed CH(4)/O(2) Bunsen flame, being seeded with a small amount of SF(6). The HF molecule was excited through a rovibrational transition at around 2.5 µm, which belongs to the fundamental vibration band. High spatial resolution was guaranteed using an orthorgonal pump-probe geometry, and an effective suppression of thermal background emission was achieved owing to the coherent nature of the demonstrated two-dimensional IRPS. Other advantages, e.g. high temporal resolution and species-specificity, are also features of this laser-based technique, which make it suitable for imaging of non-fluorescent but infrared active gaseous molecules in harsh environments.

17.
Opt Lett ; 40(21): 5019-22, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512508

RESUMO

A laser method to suppress background interferences in pump-probe measurements is presented and demonstrated. The method is based on structured illumination, where the intensity profile of the pump beam is spatially modulated to make its induced photofragment signal distinguishable from that created solely by the probe beam. A spatial lock-in algorithm is then applied on the acquired data, extracting only those image components that are characterized by the encoded structure. The concept is demonstrated for imaging of OH photofragments in a laminar methane/air flame, where the signal from the OH photofragments produced by the pump beam is spatially overlapping with that from the naturally present OH radicals. The purpose was to perform for the first time, to the best of our knowledge, single-shot imaging of HO(2) in a flame. These results show an increase in signal-to-interference ratio of about 20 for single-shot data.

18.
Appl Opt ; 54(5): 1058-64, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25968022

RESUMO

A laser diagnostic concept for measurement of potassium chloride (KCl) and potentially other alkali compounds in large-scale boilers and furnaces of limited optical access is presented. Single-ended, range-resolved, quantitative detection of KCl is achieved by differential absorption light detection and ranging (DIAL) based on picosecond laser pulses. Picosecond DIAL results have been compared experimentally with line-of-sight measurements using a commercial instrument, the in situ alkali chloride monitor (IACM), utilizing differential optical absorption spectroscopy. For centimeter-scale range resolution and a collection distance of 2.5 m, picosecond DIAL allowed for measurement of KCl concentrations around 130 ppm at 1200 K, in good agreement with values obtained by IACM. The DIAL data indicate a KCl detection limit of around 30 ppm for the present experimental conditions. In addition, a double-pulse DIAL setup has been developed and demonstrated for measurements under dynamic conditions with strong Mie scattering. The picosecond DIAL results are discussed and related to possible implementations of the method for measurements in industrial environments.

19.
Opt Express ; 22(7): 7711-21, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718147

RESUMO

It is well known that spectroscopic measurements suffer from an interference known as stray light, causing spectral distortion that reduces measurement accuracy. In severe situations, stray light may even obscure the existence of spectral lines. Here a novel general method is presented, named Periodic Shadowing, that enables effective stray light elimination in spectroscopy and experimental results are provided to demonstrate its capabilities and versatility. Besides its efficiency, implementing it in a spectroscopic arrangement comes at virtually no added experimental complexity.

20.
Opt Lett ; 39(9): 2584-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784051

RESUMO

Structured illumination (SI), which is an imaging technique that is employed in a variety of fields, permits unique possibilities to suppress unwanted signal contributions that carry misguiding information such as out-of-focus light or multiply scattered light. So far SI has been applied mostly for averaged imaging or for imaging of slowly occurring events because it requires three acquisitions (subimages) to construct the final SI image. This prerequisite puts technological constraints on SI that make "instantaneous" imaging of fast transient processes (occurring on submicrosecond time scales) very challenging and expensive. Operating SI with fewer subimages generates errors in the form of residual lines that stretch across the image. Here, a new approach that circumvents this limiting factor is presented and experimentally demonstrated. By judiciously choosing the intensity modulation, it is possible to extract an SI image from two subimages only. This development will allow standard double-pulsed lasers and interline transfer CCD or scientific CMOS cameras to be used to acquire temporally frozen SI images of rapidly occurring processes as well as to boost the frame-rate of current SI video systems; a technical advancement that will benefit both macro- and microscopic imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA