RESUMO
Thioredoxin interacting protein (TXNIP) has emerged as a significant regulator of ß-cell mass and loss, rendering it an attractive target for treating diabetes. We previously showed that Shiga-Y6, a fluorinated curcumin derivative, inhibited TXNIP mRNA and protein expression in vitro, raising the question of whether the same effect could be translated in vivo. Herein, we examined the effect of Shiga-Y6 on TNXIP levels and explored its therapeutic potential in a mouse model of diabetes, Akita mice. We intraperitoneally injected Shiga-Y6 (SY6; 30 mg/kg of body weight) or vehicle into 8-week-old Akita mice for 28 consecutive days. On day 29, the mice were euthanized, following which the serum levels of glucose, insulin, and glucagon were measured using ELISA, the expression of TXNIP in pancreatic tissue lysates was determined using western blotting, and the level of ß-cell apoptosis was assessed using the TUNEL assay. TXNIP levels in the pancreatic tissue of Akita mice were significantly elevated compared with wild-type (WT) mice. Shiga-Y6 administration for 28 days significantly lowered those levels compared with Akita mice that received vehicle to a level comparable to WT mice. In immunohistochemical analysis, both α- to ß-cell ratio and the number of apoptotic ß-cells were significantly reduced in SY6-treated Akita mice, compared with vehicle-treated Akita mice. Findings from the present study suggest a potential of Shiga-Y6 as an antidiabetic agent through lowering TXNIP protein levels and ameliorating pancreatic ß-cells apoptosis.
Assuntos
Curcumina , Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Imunoterapia , Células-Tronco Neoplásicas/patologia , Temozolomida/uso terapêuticoRESUMO
BACKGROUND: Brain-derived neurotrophic factor (BDNF) is a neurotrophin found in abundance in brain regions such as the hippocampus, cortex, cerebellum and basal forebrain. It has been associated with the risk of susceptibility to major depressive disorder (MDD). This study aimed to determine the association of three BDNF variants (rs6265, rs1048218 and rs1048220) with Malaysian MDD patients. METHODS: The correlation of these variants to the plasma BDNF level among Malaysian MDD patients was assessed. A total of 300 cases and 300 matched controls recruited from four public hospitals within the Klang Valley of Selangor State, Malaysia and matched for age, sex and ethnicity were screened for BDNF rs6265, rs1048218 and rs1048220 using high resolution melting (HRM). FINDINGS: BDNF rs1048218 and BDNF rs1048220 were monomorphic and were excluded from further analysis. The distribution of the alleles and genotypes for BDNF rs6265 was in Hardy-Weinberg equilibrium for the controls (p = 0.13) but was in Hardy Weinberg disequilibrium for the cases (p = 0.011). Findings from this study indicated that having BDNF rs6265 in the Malaysian population increase the odds of developing MDD by 2.05 folds (95% CI = 1.48-3.65). Plasma from 206 cases and 206 controls were randomly selected to measure the BDNF level using enzyme-linked immunosorbent assay (ELISA). A significant decrease in the plasma BDNF level of the cases as compared to controls (p<0.0001) was observed. However, there was no evidence of the effect of the rs6265 genotypes on the BDNF level indicating a possible role of other factors in modulating the BDNF level that warrants further investigation. CONCLUSION: The study indicated that having the BDNF rs6265 allele (A) increase the risk of developing MDD in the Malaysian population suggesting a possible role of BDNF in the etiology of the disorder.