Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(9): e0085323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695055

RESUMO

Rift Valley fever virus (RVFV) causes mild to severe disease in humans and livestock. Outbreaks of RVFV have been reported throughout Africa and have spread outside Africa since 2000, calling for urgent worldwide attention to this emerging virus. RVFV directly infects the liver, and elevated transaminases are a hallmark of severe RVFV infection. However, the specific contribution of viral replication in hepatocytes to pathogenesis of RVFV remains undefined. To address this, we generated a recombinant miRNA-targeted virus, RVFVmiR-122, to limit hepatocellular replication. MicroRNAs are evolutionarily conserved non-coding RNAs that regulate mRNA expression by targeting them for degradation. RVFVmiR-122 includes an insertion of four target sequences of the liver-specific miR-122. In contrast to control RVFVmiR-184, which contains four target sequences of mosquito-specific miR-184, RVFVmiR-122 has restricted replication in vitro in primary mouse hepatocytes. RVFVmiR-122-infected C57BL/6 mice survived acute hepatitis and instead developed late-onset encephalitis. This difference in clinical outcome was eliminated in Mir-122 KO mice, confirming the specificity of the finding. Interestingly, C57BL/6 mice infected with higher doses of RVFVmiR-122 had a higher survival rate which was correlated with faster clearance of virus from the liver, suggesting a role for activation of host immunity in the phenotype. Together, our data demonstrate that miR-122 can specifically restrict the replication of RVFVmiR-122 in liver tissue both in vitro and in vivo, and this restriction alters the clinical course of disease following RVFVmiR-122 infection. IMPORTANCE Rift Valley fever virus (RVFV) is a hemorrhagic fever virus that causes outbreaks in humans and livestock throughout Africa and has spread to continents outside Africa since 2000. However, no commercial vaccine or treatment is currently available for human use against RVFV. Although the liver has been demonstrated as a key target of RVFV, the contribution of viral replication in hepatocytes to overall RVFV pathogenesis is less well defined. In this study we addressed this question by using a recombinant miRNA-targeted virus with restricted replication in hepatocytes. We gained a better understanding of how this individual cell type contributes to the development of disease caused by RVFV. Techniques used in this study provide an innovative tool to the RVFV field that could be applied to study the consequences of limited RVFV replication in other target cells.


Assuntos
Hepatócitos , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Replicação Viral , Animais , Humanos , Camundongos , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/fisiologia
2.
Am J Pathol ; 192(9): 1259-1281, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718058

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an epidemic affecting 30% of the US population. It is characterized by insulin resistance, and by defective lipid metabolism and mitochondrial dysfunction in the liver. SLC25A34 is a major repressive target of miR-122, a miR that has a central role in NAFLD and liver cancer. However, little is known about the function of SLC25A34. To investigate SLC25A34 in vitro, mitochondrial respiration and bioenergetics were examined using hepatocytes depleted of Slc25a34 or overexpressing Slc25a34. To test the function of SLC25A34 in vivo, a hepatocyte-specific knockout mouse was generated, and loss of SLC25A34 was assessed in mice maintained on a chow diet and a fast-food diet (FFD), a model for NAFLD. Hepatocytes depleted of Slc25a34 displayed increased mitochondrial biogenesis, lipid synthesis, and ADP/ATP ratio; Slc25a34 overexpression had the opposite effect. In the knockout model on chow diet, SLC25A34 loss modestly affected liver function (altered glucose metabolism was the most pronounced defect). RNA-sequencing revealed changes in metabolic processes, especially fatty acid metabolism. After 2 months on FFD, knockouts had a more severe phenotype, with increased lipid content and impaired glucose tolerance, which was attenuated after longer FFD feeding (6 months). This work thus presents a novel model for studying SLC25A34 in vivo in which SLC25A34 plays a role in mitochondrial respiration and bioenergetics during NAFLD.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Glucose/metabolismo , Hepatócitos/metabolismo , Homeostase , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
Am J Pathol ; 192(1): 56-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599880

RESUMO

N6-methyladenosine (m6A), the most abundant internal modifier of mRNAs installed by the methyltransferase 13 (METTL3) at the (G/A)(m6A)C motif, plays a critical role in the regulation of gene expression. METTL3 is essential for embryonic development, and its dysregulation is linked to various diseases. However, the role of METTL3 in liver biology is largely unknown. In this study, METTL3 function was unraveled in mice depleted of Mettl3 in neonatal livers (Mettl3fl/fl; Alb-Cre). Liver-specific Mettl3 knockout (M3LKO) mice exhibited global decrease in m6A on polyadenylated RNAs and pathologic features associated with nonalcoholic fatty liver disease (eg, hepatocyte ballooning, ductular reaction, microsteatosis, pleomorphic nuclei, DNA damage, foci of altered hepatocytes, focal lobular and portal inflammation, and elevated serum alanine transaminase/alkaline phosphatase levels). Mettl3-depleted hepatocytes were highly proliferative, with decreased numbers of binucleate hepatocytes and increased nuclear polyploidy. M3LKO livers were characterized by reduced m6A and expression of several key metabolic transcripts regulated by circadian rhythm and decreased nuclear protein levels of the core clock transcription factors BMAL1 and CLOCK. A significant decrease in total Bmal1 and Clock mRNAs but an increase in their nuclear levels were observed in M3LKO livers, suggesting impaired nuclear export. Consistent with the phenotype, methylated (m6A) RNA immunoprecipitation coupled with sequencing and RNA sequencing revealed transcriptome-wide loss of m6A markers and alterations in abundance of mRNAs involved in metabolism in M3LKO. Collectively, METTL3 and m6A modifications are critical regulators of liver homeostasis and function.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Homeostase , Fígado/metabolismo , Metiltransferases/metabolismo , Ploidias , Fatores de Transcrição ARNTL/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fígado/patologia , Camundongos Knockout , Poliadenilação , Poliploidia , Proteínas Tirosina Quinases/metabolismo , Transcriptoma/genética
4.
Am J Pathol ; 190(2): 372-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843499

RESUMO

Aging is associated with inflammation and metabolic syndrome, which manifests in the liver as nonalcoholic fatty liver disease (NAFLD). NAFLD can range in severity from steatosis to fibrotic steatohepatitis and is a major cause of hepatic morbidity. However, the pathogenesis of NAFLD in naturally aged animals is unclear. Herein, we performed a comprehensive study of lipid content and inflammatory signature of livers in 19-month-old aged female mice. These animals exhibited increased body and liver weight, hepatic triglycerides, and inflammatory gene expression compared with 3-month-old young controls. The aged mice also had a significant increase in F4/80+ hepatic macrophages, which coexpressed CD11b, suggesting a circulating monocyte origin. A global knockout of the receptor for monocyte chemoattractant protein (CCR2) prevented excess steatosis and inflammation in aging livers but did not reduce the number of CD11b+ macrophages, suggesting changes in macrophage accumulation precede or are independent from chemokine (C-C motif) ligand-CCR2 signaling in the development of age-related NAFLD. RNA sequencing further elucidated complex changes in inflammatory and metabolic gene expression in the aging liver. In conclusion, we report a previously unknown accumulation of CD11b+ macrophages in aged livers with robust inflammatory and metabolic transcriptomic changes. A better understanding of the hallmarks of aging in the liver will be crucial in the development of preventive measures and treatments for end-stage liver disease in elderly patients.


Assuntos
Envelhecimento/patologia , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CCR2/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal , Quimiocina CCL2/genética , Feminino , Perfilação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , Receptores CCR2/genética
5.
Am J Pathol ; 189(6): 1241-1255, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928253

RESUMO

The liver contains diploid and polyploid hepatocytes (tetraploid, octaploid, etc.), with polyploids comprising ≥90% of the hepatocyte population in adult mice. Polyploid hepatocytes form multipolar spindles in mitosis, which lead to chromosome gains/losses and random aneuploidy. The effect of aneuploidy on liver function is unclear, and the degree of liver aneuploidy is debated, with reports showing aneuploidy affects 5% to 60% of hepatocytes. To study relationships among liver polyploidy, aneuploidy, and adaptation, mice lacking E2f7 and E2f8 in the liver (LKO), which have a polyploidization defect, were used. Polyploids were reduced fourfold in LKO livers, and LKO hepatocytes remained predominantly diploid after extensive proliferation. Moreover, nearly all LKO hepatocytes were euploid compared with control hepatocytes, suggesting polyploid hepatocytes are required for production of aneuploid progeny. To determine whether reduced polyploidy impairs adaptation, LKO mice were bred onto a tyrosinemia background, a disease model whereby the liver can develop disease-resistant, regenerative nodules. Although tyrosinemic LKO mice were more susceptible to morbidities and death associated with tyrosinemia-induced liver failure, they developed regenerating nodules similar to control mice. Analyses revealed that nodules in the tyrosinemic livers were generated by aneuploidy and inactivating mutations. In summary, we identified new roles for polyploid hepatocytes and demonstrated that they are required for the formation of aneuploid progeny and can facilitate adaptation to chronic liver disease.


Assuntos
Adaptação Fisiológica , Hepatócitos/metabolismo , Regeneração Hepática , Lesão Pulmonar/metabolismo , Poliploidia , Animais , Fator de Transcrição E2F7/deficiência , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteínas Repressoras/deficiência
6.
Hepatology ; 69(3): 1242-1258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30244478

RESUMO

The liver contains a mixture of hepatocytes with diploid or polyploid (tetraploid, octaploid, etc.) nuclear content. Polyploid hepatocytes are commonly found in adult mammals, representing ~90% of the entire hepatic pool in rodents. The cellular and molecular mechanisms that regulate polyploidization have been well characterized; however, it is unclear whether diploid and polyploid hepatocytes function similarly in multiple contexts. Answering this question has been challenging because proliferating hepatocytes can increase or decrease ploidy, and animal models with healthy diploid-only livers have not been available. Mice lacking E2f7 and E2f8 in the liver (liver-specific E2f7/E2f8 knockout; LKO) were recently reported to have a polyploidization defect, but were otherwise healthy. Herein, livers from LKO mice were rigorously characterized, demonstrating a 20-fold increase in diploid hepatocytes and maintenance of the diploid state even after extensive proliferation. Livers from LKO mice maintained normal function, but became highly tumorigenic when challenged with tumor-promoting stimuli, suggesting that tumors in LKO mice were driven, at least in part, by diploid hepatocytes capable of rapid proliferation. Indeed, hepatocytes from LKO mice proliferate faster and out-compete control hepatocytes, especially in competitive repopulation studies. In addition, diploid or polyploid hepatocytes from wild-type (WT) mice were examined to eliminate potentially confounding effects associated with E2f7/E2f8 deficiency. WT diploid cells also showed a proliferative advantage, entering and progressing through the cell cycle faster than polyploid cells, both in vitro and during liver regeneration (LR). Diploid and polyploid hepatocytes responded similarly to hepatic mitogens, indicating that proliferation kinetics are unrelated to differential response to growth stimuli. Conclusion: Diploid hepatocytes proliferate faster than polyploids, suggesting that the polyploid state functions as a growth suppressor to restrict proliferation by the majority of hepatocytes.


Assuntos
Proliferação de Células/genética , Hepatócitos/citologia , Regeneração Hepática/genética , Poliploidia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 293(38): 14740-14757, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30087120

RESUMO

Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation. Here, we investigated ChREBP's role in these processes and its relationship to Myc. Unlike Myc loss, ChREBP loss conferred a proliferative disadvantage to normal murine hepatocytes, as did the combined loss of ChREBP and Myc. Moreover, hepatoblastomas (HBs) originating in myc-/-, chrebp-/-, or myc-/-/chrebp-/- backgrounds grew significantly more slowly. Metabolic studies on livers and HBs in all three genetic backgrounds revealed marked differences in oxidative phosphorylation, fatty acid ß-oxidation (FAO), and pyruvate dehydrogenase activity. RNA-Seq of livers and HBs suggested seven distinct mechanisms of Myc-ChREBP target gene regulation. Gene ontology analysis indicated that many transcripts deregulated in the chrebp-/- background encode enzymes functioning in glycolysis, the TCA cycle, and ß- and ω-FAO, whereas those dysregulated in the myc-/- background encode enzymes functioning in glycolysis, glutaminolysis, and sterol biosynthesis. In the myc-/-/chrebp-/- background, additional deregulated transcripts included those involved in peroxisomal ß- and α-FAO. Finally, we observed that Myc and ChREBP cooperatively up-regulated virtually all ribosomal protein genes. Our findings define the individual and cooperative proliferative, metabolic, and transcriptional roles for the "Extended Myc Network" under both normal and neoplastic conditions.


Assuntos
Proliferação de Células/fisiologia , Hepatoblastoma/patologia , Hepatócitos/citologia , Neoplasias Hepáticas Experimentais/patologia , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/genética , Complexo Piruvato Desidrogenase/metabolismo , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Fatores de Transcrição/genética , Transcrição Gênica
8.
Cell Mol Gastroenterol Hepatol ; 13(6): 1785-1804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259493

RESUMO

BACKGROUND & AIMS: The c-Myc (Myc) Basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation, and proliferation. This Myc network crosstalks with the Mlx network, which consists of the Myc-like proteins MondoA and ChREBP, and Max-like Mlx. Together, this extended Myc network regulates both common and distinct gene targets. Here, we studied the consequence of Myc and/or Mlx ablation in the liver, particularly those pertaining to hepatocyte proliferation, metabolism, and spontaneous tumorigenesis. METHODS: We examined the ability of hepatocytes lacking Mlx (MlxKO) or Myc+Mlx (double KO [DKO]) to repopulate the liver over an extended period of time in a murine model of type I tyrosinemia. We also compared this and other relevant behaviors, phenotypes, and transcriptomes of the livers with those from previously characterized MycKO, ChrebpKO, and MycKO × ChrebpKO mice. RESULTS: Hepatocyte regenerative potential deteriorated as the Extended Myc Network was progressively dismantled. Genes and pathways dysregulated in MlxKO and DKO hepatocytes included those pertaining to translation, mitochondrial function, and hepatic steatosis resembling nonalcoholic fatty liver disease. The Myc and Mlx Networks were shown to crosstalk, with the latter playing a disproportionate role in target gene regulation. All cohorts also developed steatosis and molecular evidence of early steatohepatitis. Finally, MlxKO and DKO mice showed extensive hepatic adenomatosis. CONCLUSIONS: In addition to showing cooperation between the Myc and Mlx Networks, this study showed the latter to be more important in maintaining proliferative, metabolic, and translational homeostasis, while concurrently serving as a suppressor of benign tumorigenesis. GEO accession numbers: GSE181371, GSE130178, and GSE114634.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Neoplasias , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinogênese/genética , Transformação Celular Neoplásica , Regeneração Hepática , Camundongos , Neoplasias/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Biomed Biotechnol ; 2011: 264350, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799659

RESUMO

Hematopoietic stem cells recipients remain susceptible to opportunistic viral infections including herpes simplex virus type-1 (HSV-1). The purpose of this investigation was to analyze susceptibility of human mesenchymal stem cells (hMSCs) to HSV-1 infection and identify the major entry receptor. Productive virus infection in hMSCs was confirmed by replication and plaque formation assays using a syncytial HSV-1 KOS (804) virus. To examine the significance of entry receptors, RT-PCR and antibody-blocking assays were performed. RT-PCR data showed the expression of gD receptors: nectin-1, 3-O sulfotransferase-3 (3-OST-3), and HVEM. Antibody-blocking assay together with heparinase treatment suggested an important role for HS and 3-O-sulfated heparan sulfate (3-OS HS), but not nectin-1 or HVEM, in mediating HSV-1 entry and spread in hMSCs. Taken together, our results provide strong evidence demonstrating that HSV-1 is capable of infecting hMSCs and HS and 3-OS HS serve as its entry receptors during this process.


Assuntos
Heparitina Sulfato/metabolismo , Herpesvirus Humano 1/fisiologia , Células-Tronco Mesenquimais/virologia , Internalização do Vírus , Animais , Células CHO , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Citoesqueleto/metabolismo , Células Gigantes , Células HeLa , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Nectinas , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Proteínas do Envelope Viral/metabolismo , Ensaio de Placa Viral , Replicação Viral/fisiologia
10.
Stem Cells Dev ; 26(21): 1578-1595, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874101

RESUMO

Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia
12.
Cancer Res ; 77(21): 5795-5807, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883002

RESUMO

Rapidly proliferating cells increase glycolysis at the expense of oxidative phosphorylation (oxphos) to generate sufficient levels of glycolytic intermediates for use as anabolic substrates. The pyruvate dehydrogenase complex (PDC) is a critical mitochondrial enzyme that catalyzes pyruvate's conversion to acetyl coenzyme A (AcCoA), thereby connecting these two pathways in response to complex energetic, enzymatic, and metabolic cues. Here we utilized a mouse model of hepatocyte-specific PDC inactivation to determine the need for this metabolic link during normal hepatocyte regeneration and malignant transformation. In PDC "knockout" (KO) animals, the long-term regenerative potential of hepatocytes was unimpaired, and growth of aggressive experimental hepatoblastomas was only modestly slowed in the face of 80%-90% reductions in AcCoA and significant alterations in the levels of key tricarboxylic acid (TCA) cycle intermediates and amino acids. Overall, oxphos activity in KO livers and hepatoblastoma was comparable with that of control counterparts, with evidence that metabolic substrate abnormalities were compensated for by increased mitochondrial mass. These findings demonstrate that the biochemical link between glycolysis and the TCA cycle can be completely severed without affecting normal or neoplastic proliferation, even under the most demanding circumstances. Cancer Res; 77(21); 5795-807. ©2017 AACR.


Assuntos
Proliferação de Células , Ciclo do Ácido Cítrico , Glicólise , Hepatócitos/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilcoenzima A/metabolismo , Animais , Células Cultivadas , Feminino , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Hepatócitos/citologia , Immunoblotting , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Análise de Sobrevida , Espectrometria de Massas em Tandem
13.
PLoS One ; 7(5): e37162, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615926

RESUMO

Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Estilbenos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Resveratrol , Fase S/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA