Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 24(5): 757-766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012544

RESUMO

Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.


Assuntos
Tecido Adiposo , Macrófagos , Humanos , Homeostase , Obesidade , Lipídeos , Inflamação
3.
Immunity ; 54(3): 468-483.e5, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33484643

RESUMO

Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.


Assuntos
Vasos Sanguíneos/imunologia , Dermatite de Contato/imunologia , Inflamação/imunologia , Mastócitos/imunologia , Neutrófilos/imunologia , Pele/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Circulação Sanguínea , Degranulação Celular , Células Cultivadas , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Vesículas Secretórias/metabolismo , Fator de Necrose Tumoral alfa/genética
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982747

RESUMO

White adipose tissue (WAT) fibrosis, characterized by an excess of extracellular (ECM) matrix components, is strongly associated with WAT inflammation and dysfunction due to obesity. Interleukin (IL)-13 and IL-4 were recently identified as critical mediators in the pathogenesis of fibrotic diseases. However, their role in WAT fibrosis is still ill-defined. We therefore established an ex vivo WAT organotypic culture system and demonstrated an upregulation of fibrosis-related genes and an increase of α-smooth muscle actin (αSMA) and fibronectin abundance upon dose-dependent stimulation with IL-13/IL-4. These fibrotic effects were lost in WAT lacking il4ra, which encodes for the underlying receptor controlling this process. Adipose tissue macrophages were found to play a key role in mediating IL-13/IL-4 effects in WAT fibrosis as their depletion through clodronate dramatically decreased the fibrotic phenotype. IL-4-induced WAT fibrosis was partly confirmed in mice injected intraperitoneally with IL-4. Furthermore, gene correlation analyses of human WAT samples revealed a strong positive correlation of fibrosis markers with IL-13/IL-4 receptors, whereas IL13 and IL4 correlations failed to confirm this association. In conclusion, IL-13 and IL-4 can induce WAT fibrosis ex vivo and partly in vivo, but their role in human WAT remains to be further elucidated.


Assuntos
Interleucina-13 , Interleucina-4 , Humanos , Camundongos , Animais , Interleucina-13/genética , Interleucina-4/genética , Tecido Adiposo/patologia , Tecido Adiposo Branco/patologia , Fibrose
5.
J Immunol ; 204(5): 1214-1224, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31980574

RESUMO

Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression. DEL-1 is a secreted homeostatic factor that inhibits ß2-integrin-dependent leukocyte adhesion, and the subsequent leukocyte recruitment and its expression is downregulated upon inflammation. Similarly, DHEA inhibited leukocyte adhesion to the endothelium in venules of the inflamed mouse cremaster muscle. Importantly, in a model of lung inflammation, DHEA limited neutrophil recruitment in a DEL-1-dependent manner. Mechanistically, DHEA counteracted the inhibitory effect of inflammation on DEL-1 expression. Indeed, whereas TNF reduced DEL-1 expression and secretion in endothelial cells by diminishing C/EBPß binding to the DEL-1 gene promoter, DHEA counteracted the inhibitory effect of TNF via activation of tropomyosin receptor kinase A (TRKA) and downstream PI3K/AKT signaling that restored C/EBPß binding to the DEL-1 promoter. In conclusion, DHEA restrains neutrophil recruitment by reversing inflammation-induced downregulation of DEL-1 expression. Therefore, the anti-inflammatory DHEA/DEL-1 axis could be harnessed therapeutically in the context of inflammatory diseases.


Assuntos
Proteínas de Ligação ao Cálcio/imunologia , Moléculas de Adesão Celular/imunologia , Desidroepiandrosterona/farmacologia , Leucócitos/imunologia , Transdução de Sinais/imunologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Antígenos CD18/imunologia , Adesão Celular/imunologia , Endotélio Vascular/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Leucócitos/citologia , Camundongos , Fosfatidilinositol 3-Quinases/imunologia , Regiões Promotoras Genéticas/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptor trkA/imunologia
6.
Cell Mol Life Sci ; 78(7): 3577-3590, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464382

RESUMO

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.


Assuntos
Glândulas Suprarrenais/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Esteroides/biossíntese , Animais , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
7.
Horm Metab Res ; 53(1): 9-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33207372

RESUMO

Coronavirus disease 2019 (COVID-19), caused by an infection with the novel coronavirus SARS-CoV-2, has resulted in a global pandemic and poses an emergency to public health systems worldwide. COVID-19 is highly infectious and is characterized by an acute respiratory illness that varies from mild flu-like symptoms to the life-threatening acute respiratory distress syndrome (ARDS). As such, there is an urgent need for the development of new therapeutic strategies, which combat the high mortality in severely ill COVID-19 patients. Glucocorticoids are a frontline treatment for a diverse range of inflammatory diseases. Due to their immunosuppressive functions, the use of glucocorticoids in the treatment of COVID-19 patients was initially regarded with caution. However, recent studies concluded that the initiation of systemic glucocorticoids in patients suffering from severe and critical COVID-19 is associated with lower mortality. Herein we review the anti-inflammatory effects of glucocorticoids and discuss emerging issues in their clinical use in the context of COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Glucocorticoides/uso terapêutico , Imunossupressores/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Humanos , Síndrome do Desconforto Respiratório/virologia
8.
Front Neuroendocrinol ; 55: 100788, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513776

RESUMO

Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17ß-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Inflamação , Esclerose Múltipla , Neuroesteroides/metabolismo , Doença de Parkinson , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo
9.
Exp Cell Res ; 377(1-2): 10-16, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30817930

RESUMO

Microglia, the parenchymal immune cells of the central nervous system, orchestrate neuroinflammation in response to infection or damage, and promote tissue repair. However, aberrant microglial responses are integral to neurodegenerative diseases and critically contribute to disease progression. Thus, it is important to elucidate how microglia - mediated neuroinflammation is regulated by endogenous factors. Here, we explored the effect of Nerve Growth Factor (NGF), an abundant neurotrophin, on microglial inflammatory responses. NGF, via its high affinity receptor TrkA, downregulated LPS - induced production of pro-inflammatory cytokines and NO in primary mouse microglia and inhibited TLR4 - mediated activation of the NF-κB and JNK pathways. Furthermore, NGF attenuated the LPS - enhanced glycolytic activity in microglia, as suggested by reduced glucose uptake and decreased expression of the glycolytic enzymes Pfkß3 and Ldhα. Consistently, 2DG - mediated glycolysis inhibition strongly downregulated LPS - induced cytokine production in microglial cells. Our findings demonstrate that NGF attenuates pro-inflammatory responses in microglia and may thereby contribute to regulation of microglia - mediated neuroinflammation.


Assuntos
Glicólise/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Animais , Citocinas/genética , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
10.
J Cell Mol Med ; 23(4): 2362-2371, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680928

RESUMO

The mechanism underlying vasoproliferative retinopathies like retinopathy of prematurity (ROP) is hypoxia-triggered neovascularisation. Nerve growth factor (NGF), a neurotrophin supporting survival and differentiation of neuronal cells may also regulate endothelial cell functions. Here we studied the role of NGF in pathological retinal angiogenesis in the course of the ROP mouse model. Topical application of NGF enhanced while intraocular injections of anti-NGF neutralizing antibody reduced pathological retinal vascularization in mice subjected to the ROP model. The pro-angiogenic effect of NGF in the retina was mediated by inhibition of retinal endothelial cell apoptosis. In vitro, NGF decreased the intrinsic (mitochondria-dependent) apoptosis in hypoxia-treated human retinal microvascular endothelial cells and preserved the mitochondrial membrane potential. The anti-apoptotic effect of NGF was associated with increased BCL2 and reduced BAX, as well as with enhanced ERK and AKT phosphorylation, and was abolished by inhibition of the AKT pathway. Our findings reveal an anti-apoptotic role of NGF in the hypoxic retinal endothelium, which is involved in promoting pathological retinal vascularization, thereby pointing to NGF as a potential target for proliferative retinopathies.


Assuntos
Anticorpos Neutralizantes/farmacologia , Neovascularização Patológica/terapia , Fator de Crescimento Neural/antagonistas & inibidores , Retinopatia da Prematuridade/terapia , Apoptose/efeitos dos fármacos , Células Endoteliais , Humanos , Injeções Intraoculares , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fator de Crescimento Neural/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Retina/efeitos dos fármacos , Retina/patologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Proteína X Associada a bcl-2/genética
11.
Rev Endocr Metab Disord ; 17(1): 41-9, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26910560

RESUMO

The adipose tissue (AT) is multifunctional, acting as an endocrine tissue and participating in the regulation of the organism's homeostasis. Metabolic, endocrine and inflammatory mechanisms are tightly intertwined within the AT, regulating its function. Disruption of the equilibrium among these mechanisms leads to pathologies, the most common being obesity-related insulin resistance. Two types of AT exist, the white and the brown AT. Traditionally the white AT (WAT) was thought to store energy in the form of lipids, while the brown AT (BAT) was known to mediate heat generation. Recently, the 'brite' or 'beige' AT was identified, which is localized predominantly in subcutaneous WAT, but shares functional features with the BAT and is capable of heat production. The major stimulus triggering beige and brown adipogenesis is cold exposure and catecholamine signalling. However, several further signals and mechanisms exist, which can orchestrate and fine-tune beige and brown AT function. Immune cells and inflammation have emerged as regulators of beige and brown AT function. The present review will focus on the recently identified crosstalk between innate immunity and the regulation of beige and brown adipogenesis.


Assuntos
Adipogenia/imunologia , Tecido Adiposo Bege/imunologia , Tecido Adiposo Marrom/imunologia , Imunidade Inata/imunologia , Animais , Humanos
12.
Proc Natl Acad Sci U S A ; 110(36): 14801-6, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959899

RESUMO

Inflammation-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is central to the course of systemic inflammatory response syndrome or sepsis. The underlying mechanisms, however, are not well understood. Initial activation of adrenocortical hormone production during early sepsis depends on the stimulation of hypothalamus and pituitary mediated by cytokines; in late sepsis, there is a shift from neuroendocrine to local immune-adrenal regulation of glucocorticoid production. Therefore, the modulation of the local immune-adrenal cross talk, and not of the neuroendocrine circuits involved in adrenocorticotropic hormone production, may be more promising in the prevention of the adrenal insufficiency associated with prolonged sepsis. In the present work, we investigated the function of the crucial Toll-like receptor (TLR) adaptor protein myeloid differentiation factor 88 (MyD88) in systemic and local activation of adrenal gland inflammation and glucocorticoid production mediated by lipopolysachharides (LPSs). To this end, we used mice with a conditional MyD88 allele. These mice either were interbred with Mx1 Cre mice, resulting in systemic MyD88 deletion, predominantly in the liver and hematopoietic system, or were crossed with Akr1b7 Cre transgenic mice, resulting thereby in deletion of MyD88, which was adrenocortical-specific. Although reduced adrenal inflammation and HPA-axis activation mediated by LPS were found in Mx1(Cre+)-MyD88(fl/fl) mice, adrenocortical-specific MyD88 deletion did not alter the adrenal inflammation or HPA-axis activity under systemic inflammatory response syndrome conditions. Thus, our data suggest an important role of immune cell rather than adrenocortical MyD88 for adrenal inflammation and HPA-axis activation mediated by LPS.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Inflamação/fisiopatologia , Fator 88 de Diferenciação Mieloide/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Córtex Suprarrenal/citologia , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Feminino , Expressão Gênica , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo
13.
Hepatology ; 60(4): 1196-210, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24845056

RESUMO

UNLABELLED: The low-grade inflammatory state present in obesity contributes to obesity-related metabolic dysregulation, including nonalcoholic steatohepatitis (NASH) and insulin resistance. Intercellular interactions between immune cells or between immune cells and hepatic parenchymal cells contribute to the exacerbation of liver inflammation and steatosis in obesity. The costimulatory molecules, B7.1 and B7.2, are important regulators of cell-cell interactions in several immune processes; however, the role of B7 costimulation in obesity-related liver inflammation is unknown. Here, diet-induced obesity (DIO) studies in mice with genetic inactivation of both B7.1 and B7.2 (double knockout; DKO) revealed aggravated obesity-related metabolic dysregulation, reduced insulin signalling in the liver and adipose tissue (AT), glucose intolerance, and enhanced progression to steatohepatitis resulting from B7.1/B7.2 double deficiency. The metabolic phenotype of B7.1/B7.2 double deficiency upon DIO was accompanied by increased hepatic and AT inflammation, associated with largely reduced numbers of regulatory T cells (Tregs) in these organs. In order to assess the role of B7 costimulation in DIO in a non-Treg-lacking environment, we performed antibody (Ab)-mediated inhibition of B7 molecules in wild-type mice in DIO. Antibody-blockade of both B7.1 and B7.2 improved the metabolic phenotype of DIO mice, which was linked to amelioration of hepatic steatosis and reduced inflammation in liver and AT. CONCLUSION: Our study demonstrates a dual role of B7 costimulation in the course of obesity-related sequelae, particularly NASH. The genetic inactivation of B7.1/B7.2 deteriorates obesity-related liver steatosis and metabolic dysregulation, likely a result of the intrinsic absence of Tregs in these mice, rendering DKO mice a novel murine model of NASH. In contrast, inhibition of B7 costimulation under conditions where Tregs are present may provide a novel therapeutic approach for obesity-related metabolic dysregulation and, especially, NASH.


Assuntos
Antígenos B7/fisiologia , Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Animais , Antígenos B7/deficiência , Antígenos B7/genética , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Linfócitos T Reguladores/patologia
14.
Nat Commun ; 15(1): 680, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263289

RESUMO

The limited reserves of neutrophils are implicated in the susceptibility to infection in neonates, however the regulation of neutrophil kinetics in infections in early life remains poorly understood. Here we show that the developmental endothelial locus (DEL-1) is elevated in neonates and is critical for survival from neonatal polymicrobial sepsis, by supporting emergency granulopoiesis. Septic DEL-1 deficient neonate mice display low numbers of myeloid-biased multipotent and granulocyte-macrophage progenitors in the bone marrow, resulting in neutropenia, exaggerated bacteremia, and increased mortality; defects that are rescued by DEL-1 administration. A high IL-10/IL-17A ratio, observed in newborn sepsis, sustains tissue DEL-1 expression, as IL-10 upregulates while IL-17 downregulates DEL-1. Consistently, serum DEL-1 and blood neutrophils are elevated in septic adult and neonate patients with high serum IL-10/IL-17A ratio, and mortality is lower in septic patients with high serum DEL-1. Therefore, IL-10/DEL-1 axis supports emergency granulopoiesis, prevents neutropenia and promotes sepsis survival in early life.


Assuntos
Interleucina-10 , Sepse Neonatal , Neutropenia , Sepse , Adulto , Animais , Humanos , Camundongos , Hematopoese , Interleucina-17 , Recém-Nascido
15.
Front Cell Neurosci ; 17: 1106287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213216

RESUMO

Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.

16.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478183

RESUMO

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Assuntos
Adenoma , Ácidos Graxos Dessaturases , Humanos , Camundongos , Animais , Ácidos Graxos Dessaturases/genética , Lipidômica , Ácidos Graxos Insaturados/metabolismo , Glândulas Suprarrenais/metabolismo
17.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449973

RESUMO

The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic, and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1ß reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the SDHB promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1ß-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.


Assuntos
Proteômica , Ácido Succínico , Camundongos , Animais , Glucocorticoides/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Inflamação/metabolismo
18.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524103

RESUMO

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Assuntos
Doenças Metabólicas , Viroses , Humanos , Relevância Clínica , Viroses/complicações , Doenças Metabólicas/epidemiologia , Saúde Pública
19.
J Innate Immun ; 14(1): 4-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33849008

RESUMO

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Metabólicas , Tecido Adiposo , Humanos , Imunidade Inata , Inflamação , Células Matadoras Naturais
20.
J Chromatogr A ; 1671: 463021, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35421734

RESUMO

The conditionally essential amino acid arginine and its metabolic products play an important role in different biological processes, such as metabolic regulation of the immune response, including macrophage activation and polarization and regulation of T cell function. Furthermore, the polyamine spermidine has a role in aging and age-related diseases. Additionally, altered polyamine metabolism may be associated with neurodegenerative diseases, while polyamine levels may present useful biomarkers associated with severity of Parkinson's disease or with progression of non-alcoholic fatty liver disease. In the present study, a simple, derivatization-free hydrophilic interaction liquid chromatography based tandem mass spectrometry (LC-MS/MS) method is described, that allows the accurate quantification of arginine and related amine, polyamine and acetylated polyamine metabolites in different experimental sample matrices, such as cell lysates, cell culture supernatants and tissues. Ten arginine metabolites, including citrulline, agmatine, ornithine, putrescine, spermidine, spermine, N1-acetylspermidine, N1-acetylspermine, N1,N12-diacetylspermine and arginine in conjunction with the metabolic cofactors S-adenosylhomocysteine and S-adenosylmethionine are simultaneously analyzed within a total LC-MS/MS run time of 9.5 min. The assay is suitable to quantify concentration ranges over multiple orders of magnitude for all metabolites with averaged accuracies observed at 103.2% ± 6.8%, 99.0% ± 4.2% and 100.4% ± 4.3% in cell lysates, cell culture supernatant and tissue extracts, respectively. Inter-day coefficients of variation ranged from 5.9 to 14.8% in cell lysates, 6.7 to 14.6% in cell culture supernatants and 5.3 to 12.0% in tissue extracts. The method was successfully applied to cell culture systems of different origin as well as different murine tissues and organs. The herein described LC-MS/MS method provides a simple tool for a fast and simultaneous analysis of arginine metabolites, including polyamines and their respective metabolic cofactors. Assay performance characteristics demonstrate suitability for applications in different experimental and preclinical settings.


Assuntos
Poliaminas , Espermidina , Animais , Arginina , Cromatografia Líquida/métodos , Camundongos , Espermidina/metabolismo , Espectrometria de Massas em Tandem/métodos , Extratos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA