Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Biol Chem ; : 107746, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236875

RESUMO

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics amongst the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

2.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998901

RESUMO

Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.


Assuntos
Ligação de Hidrogênio , Temperatura , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Estabilidade Proteica , Conformação Proteica , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Hemolisinas/química
3.
J Struct Biol ; : 108003, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37487847

RESUMO

This article was initially published in the Journal of Structural Biology, instead of the Journal of Structural Biology: X, due to a publisher error. We regret the inconvenience. The link to the article published in Journal of Structural Biology: X is presented below: https://www.sciencedirect.com/science/article/pii/S2590152423000090. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

4.
J Biomol NMR ; 77(3): 93-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093339

RESUMO

NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C'(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C'(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C'(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C'(ND) and 3∆C'(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.


Assuntos
Amidas , Proteínas , Amidas/química , Deutério/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Hidrogênio/química , Conformação Proteica , Ligação de Hidrogênio
5.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787158

RESUMO

Despite very low sequence homology, the major capsid proteins of double-stranded DNA (dsDNA) bacteriophages, some archaeal viruses, and the herpesviruses share a structural motif, the HK97 fold. Bacteriophage P22, a paradigm for this class of viruses, belongs to a phage gene cluster that contains three homology groups: P22-like, CUS-3-like, and Sf6-like. The coat protein of each phage has an inserted domain (I-domain) that is more conserved than the rest of the coat protein. In P22, loops in the I-domain are critical for stabilizing intra- and intersubunit contacts that guide proper capsid assembly. The nuclear magnetic resonance (NMR) structures of the P22, CUS-3, and Sf6 I-domains reveal that they are all six-stranded, anti-parallel ß-barrels. Nevertheless, significant structural differences occur in loops connecting the ß-strands, in surface electrostatics used to dock the I-domains with their respective coat protein core partners, and in sequence motifs displayed on the capsid surfaces. Our data highlight the structural diversity of I-domains that could lead to variations in capsid assembly mechanisms and capsid surfaces adapted for specific phage functions.IMPORTANCE Comparative studies of protein structures often provide insights into their evolution. The HK97 fold is a structural motif used to form the coat protein shells that encapsidate the genomes of many dsDNA phages and viruses. The structure and function of coat proteins based on the HK97 fold are often embellished by the incorporation of I-domains. In the present work we compare I-domains from three phages representative of highly divergent P22-like homology groups. While the three I-domains share a six-stranded ß-barrel skeleton, there are differences (i) in structure elements at the periphery of the conserved fold, (ii) in the locations of disordered loops important in capsid assembly and conformational transitions, (iii) in surfaces charges, and (iv) in sequence motifs that are potential ligand-binding sites. These structural modifications on the rudimentary I-domain fold suggest that considerable structural adaptability was needed to fulfill the versatile range of functional requirements for distinct phages.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Dobramento de Proteína , Proteínas do Envelope Viral/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
6.
Biophys J ; 117(8): 1387-1392, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585705

RESUMO

Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Dobramento de Proteína , Proteínas Estruturais Virais/química , Bacteriófago P22/metabolismo , Capsídeo/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Domínios Proteicos , Proteínas Estruturais Virais/metabolismo
7.
Biochemistry ; 56(11): 1604-1619, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28230348

RESUMO

To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cß) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1H-15N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Prótons , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Termodinâmica
8.
J Biol Chem ; 291(21): 11359-72, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27006399

RESUMO

The I-domain is a genetic insertion in the phage P22 coat protein that chaperones its folding and stability. Of 11 acidic residues in the I-domain, seven participate in stabilizing electrostatic interactions with basic residues across elements of secondary structure, fastening the ß-barrel fold. A hydrogen-bonded salt bridge between Asp-302 and His-305 is particularly interesting as Asp-302 is the site of a temperature-sensitive-folding mutation. The pKa of His-305 is raised to 9.0, indicating the salt bridge stabilizes the I-domain by ∼4 kcal/mol. Consistently, urea denaturation experiments indicate the stability of the WT I-domain decreases by 4 kcal/mol between neutral and basic pH. The mutants D302A and H305A remove the pH dependence of stability. The D302A substitution destabilizes the I-domain by 4 kcal/mol, whereas H305A had smaller effects, on the order of 1-2 kcal/mol. The destabilizing effects of D302A are perpetuated in the full-length coat protein as shown by a higher sensitivity to protease digestion, decreased procapsid assembly rates, and impaired phage production in vivo By contrast, the mutants have only minor effects on capsid expansion or stability in vitro The effects of the Asp-302-His-305 salt bridge are thus complex and context-dependent. Substitutions that abolish the salt bridge destabilize coat protein monomers and impair capsid self-assembly, but once capsids are formed the effects of the substitutions are overcome by new quaternary interactions between subunits.


Assuntos
Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Substituição de Aminoácidos , Bacteriófago P22/genética , Proteínas do Capsídeo/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/metabolismo , Termodinâmica
9.
Biophys J ; 109(12): 2666-2677, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682823

RESUMO

The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded ß-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded ß-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.


Assuntos
Bacteriófago P22 , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Ureia/metabolismo , Ureia/farmacologia , Ligação de Hidrogênio , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química , Temperatura
10.
Biochemistry ; 53(2): 311-22, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24364624

RESUMO

Bacterial receiver domains modulate intracellular responses to external stimuli in two-component systems. Sma0114 is the first structurally characterized representative from the family of receiver domains that are substrates for histidine-tryptophan-glutamate (HWE) kinases. We report the NMR structure of Sma0114 bound by Ca(2+) and BeF3(-), a phosphate analogue that stabilizes the activated state. Differences between the NMR structures of the inactive and activated states occur in helix α1, the active site loop that connects strand ß3 and helix α3, and in the segment from strand ß5 to helix α5 of the 455 (α4-ß5-α5) face. Structural rearrangements of the 455 face typically make receiver domains competent for binding downstream target molecules. In Sma0114 the structural changes accompanying activation result in a more negatively charged surface for the 455 face. Coupling between the 455 face and active site phosphorylation is usually mediated through the rearrangement of a threonine and tyrosine residue, in a mechanism called Y-T coupling. The NMR structure indicates that Sma0114 lacks Y-T coupling and that communication between the active site and the 455 face is achieved through a conserved lysine residue that stabilizes the acyl phosphate in receiver domains. (15)N-NMR relaxation experiments were used to investigate the backbone dynamics of the Sma0114 apoprotein, the binary Sma0114·Ca(2+) complex, and the ternary Sma0114·Ca(2+)·BeF3(-) complex. The loss of entropy due to ligand binding at the active site is compensated by increased flexibility in the 455 face. The dynamic character of the 455 face in Sma0114, which results in part from the replacement of helix α4 by a flexible loop, may facilitate induced-fit recognition of target molecules.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Quinases/metabolismo , Sinorhizobium meliloti/química , Apoproteínas/química , Apoproteínas/isolamento & purificação , Apoproteínas/metabolismo , Proteínas de Bactérias/isolamento & purificação , Berílio/química , Berílio/metabolismo , Cálcio/química , Cálcio/metabolismo , Domínio Catalítico , Fluoretos/química , Fluoretos/metabolismo , Histidina Quinase , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química
11.
Biochemistry ; 53(2): 300-10, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24377660

RESUMO

In type 2 diabetics, the hormone amylin misfolds into amyloid plaques implicated in the destruction of the pancreatic ß-cells that make insulin and amylin. The aggregative misfolding of amylin is pH-dependent, and exposure of the hormone to acidic and basic environments could be physiologically important. Amylin has two ionizable residues between pH 3 and 9: the α-amino group and His18. Our approach to measuring the pKa values for these sites has been to look at the pH dependence of fibrillization in amylin variants that have only one of the two groups. The α-amino group at the unstructured N-terminus of amylin has a pKa near 8.0, similar to the value in random coil models. By contrast, His18, which is involved in the intermolecular ß-sheet structure of the fibrils, has a pKa that is lowered to 5.0 in the fibrils compared to the random coil value of 6.5. The lowered pKa of His18 is due to the hydrophobic environment of the residue, and electrostatic repulsion between positively charged His18 residues on neighboring amylin molecules in the fibril. His18 acts as an electrostatic switch inhibiting fibrillization in its charged state. The presence of a charged side chain at position 18 also affects fibril morphology and lowers amylin cytotoxicity toward a MIN6 mouse model of pancreatic ß-cells. In addition to the two expected pKa values, we detected an apparent pKa of ~4.0 for the amylin-derived peptide NAc-SNNFGAILSS-NH2, which has no titratable groups. This pKa is due to the pH-induced ionization of the dye thioflavin T. By using alternative methods to follow fibrillization such as the dye Nile Red or turbidimetry, we were able to distinguish between the titration of the dye and groups on the peptide. Large differences in reaction kinetics were observed between the different methods at acidic pH, because of charges on the ThT dye, which hinder fibril formation much like the charges on the protein.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Benzotiazóis , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Cinética , Camundongos , Modelos Animais , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/química , Células Tumorais Cultivadas
12.
Protein Sci ; 33(9): e5149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180464

RESUMO

Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711, it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal-ligand. The Z7 domain adopts a stable tertiary structure upon metal-binding. The NMR structure of Zn2+-bound Z7 shows the classical ßßα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenylalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80°C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitrophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Fatores de Transcrição , Dedos de Zinco , Humanos , Sítios de Ligação , Modelos Moleculares , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Zinco/química
13.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645208

RESUMO

Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ßßα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.

14.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39282432

RESUMO

The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a three-stranded intertwined spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec 1-98 ) was used to demonstrate that the stable globular OB-fold domain folds independently of the C-terminal residues. However, Dec 1-98 was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, however, implying Dec trimer assembly in vivo is templated by the phage capsid. The Thermodynamic Hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.

15.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948727

RESUMO

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

16.
J Struct Biol X ; 8: 100093, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655311

RESUMO

ZNF750 is a nuclear transcription factor that activates skin differentiation and has tumor suppressor roles in several cancers. Unusually, ZNF750 has only a single zinc-finger (ZNF) domain, Z*, with an amino acid sequence that differs markedly from the CCHH family consensus. Because of its sequence differences Z* is classified as degenerate, presumed to have lost the ability to bind the zinc ion required for folding. AlphaFold predicts an irregular structure for Z* with low confidence. Low confidence predictions are often inferred to be intrinsically disordered regions of proteins, which would be the case if Z* did not bind Zn2+. We use NMR and CD spectroscopy to show that a 25-51 segment of ZNF750 corresponding to the Z* domain folds into a well-defined antiparallel ßßα tertiary structure with a pM dissociation constant for Zn2+ and a thermal stability >80 °C. Of three alternative Zn2+ ligand sets, Z* uses a CCHC rather than the expected CCHH ligating motif. The switch in the last ligand maintains the folding topology and hydrophobic core of the classical ZNF motif. CCHC ZNFs are typically associated with protein-protein interactions, raising the possibility that ZNF750 interacts with DNA through other proteins rather than directly. The structure of Z* provides context for understanding the function of the domain and its cancer-associated mutations. We expect other ZNFs currently classified as degenerate could be CCHC-type structures like Z*.

17.
Biomol NMR Assign ; 17(2): 301-307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861970

RESUMO

Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with ß-strand propensity- the ß-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4-6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.


Assuntos
Cinesinas , Microtúbulos , Ratos , Animais , Cinesinas/química , Cinesinas/metabolismo , Sequência de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Microtúbulos/metabolismo , Hidrogênio
18.
Front Physiol ; 14: 1263420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028797

RESUMO

Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-ß precursor protein (APP) or its cleavage product amyloid-ß (Aß), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aß, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.

19.
Biochemistry ; 51(35): 6932-41, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22880754

RESUMO

Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/ß(5) Rossman fold but has features that set it apart from other receiver domains. The fourth ß-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-ß5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sinorhizobium meliloti/enzimologia , Cálcio/metabolismo , Domínio Catalítico , Histidina Quinase , Magnésio/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Filogenia , Conformação Proteica , Dobramento de Proteína , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Sinorhizobium meliloti/química , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
20.
J Biol Chem ; 286(26): 22894-904, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21555785

RESUMO

We characterized the interaction of amylin with heparin fragments of defined length, which model the glycosaminoglycan chains associated with amyloid deposits found in type 2 diabetes. Binding of heparin fragments to the positively charged N-terminal half of monomeric amylin depends on the concentration of negatively charged saccharides but is independent of oligosaccharide length. By contrast, amylin fibrillogenesis has a sigmoidal dependence on heparin fragment length, with an enhancement observed for oligosaccharides longer than four monomers and a leveling off of effects beyond 12 monomers. The length dependence suggests that the negatively charged helical structure of heparin electrostatically complements the positively charged surface of the fibrillar amylin cross-ß structure. Fluorescence resonance energy transfer and total internal reflection fluorescence microscopy experiments indicate that heparin associates with amylin fibrils, rather than enhancing fibrillogenesis catalytically. Short heparin fragments containing two- or eight-saccharide monomers protect against amylin cytotoxicity toward a MIN6 mouse cell model of pancreatic ß-cells.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Heparina/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Biológicos , Oligossacarídeos/metabolismo , Animais , Linhagem Celular , Heparina/química , Humanos , Células Secretoras de Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Camundongos , Oligossacarídeos/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA