Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 283: 116856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151373

RESUMO

Air pollution in industrial environments, particularly in the chrome plating process, poses significant health risks to workers due to high concentrations of hazardous pollutants. Exposure to substances like hexavalent chromium, volatile organic compounds (VOCs), and particulate matter can lead to severe health issues, including respiratory problems and lung cancer. Continuous monitoring and timely intervention are crucial to mitigate these risks. Traditional air quality monitoring methods often lack real-time data analysis and predictive capabilities, limiting their effectiveness in addressing pollution hazards proactively. This paper introduces a real-time air pollution monitoring and forecasting system specifically designed for the chrome plating industry. The system, supported by Internet of Things (IoT) sensors and AI approaches, detects a wide range of air pollutants, including NH3, CO, NO2, CH4, CO2, SO2, O3, PM2.5, and PM10, and provides real-time data on pollutant concentration levels. Data collected by the sensors are processed using LSTM, Random Forest, and Linear Regression models to predict pollution levels. The LSTM model achieved a coefficient of variation (R²) of 99 % and a mean absolute percentage error (MAE) of 0.33 for temperature and humidity forecasting. For PM2.5, the Random Forest model outperformed others, achieving an R² of 84 % and an MAE of 10.11. The system activates factory exhaust fans to circulate air when high pollution levels are predicted to occur in the next hours, allowing for proactive measures to improve air quality before issues arise. This innovative approach demonstrates significant advancements in industrial environmental monitoring, enabling dynamic responses to pollution and improving air quality in industrial settings.

2.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365875

RESUMO

This paper aims to develop a new mobile robot path planning algorithm, called generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding the target and avoiding obstacles while moving in complex regions. An optimal path between the start and target point is found by forming a wave of points in all directions towards the target position considering target minimum and border maximum distance principles. The algorithm will select the minimum path from the candidate points to target while avoiding obstacles. The obstacle borders are regarded as the environment's borders for static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic obstacle borders. Several experiments were carried out to validate the effectiveness and practicality of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex dynamic environment. The findings indicate that the robot could successfully find the correct path while avoiding obstacles. The proposed method is compared to other popular methods in terms of speed and path length in both real and simulated environments. According to the results, the GLS algorithm outperformed the original laser simulator (LS) method in path and success rate. With application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and provides safer and shorter paths. Furthermore, the path planning approach was validated for local planning in simulation and real-world tests, in which the proposed method produced the best path compared to the original LS algorithm.

3.
Sensors (Basel) ; 20(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630340

RESUMO

A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator-fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a predefined goal while discovering and detecting the road roundabout. A complete modeling and path planning of the road's roundabout intersection was derived to enable the WMR to navigate autonomously in indoor and outdoor terrains. A new algorithm, called Laser Simulator, has been introduced to detect various entities in a road roundabout setting, which is later integrated with fuzzy logic algorithm for making the right decision about the existence of the roundabout. The sensor fusion process involving the use of a Wi-Fi camera, laser range finder, and odometry was implemented to generate the robot's path planning and localization within the road environment. The local maps were built using the extracted data from the camera and laser range finder to estimate the road parameters such as road width, side curbs, and roundabout center, all in two-dimensional space. The path generation algorithm was fully derived within the local maps and tested with a WMR platform in real-time.

4.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810102

RESUMO

Diagnosing diabetes early is critical as it helps patients live with the disease in a healthy way - through healthy eating, taking appropriate medical doses, and making patients more vigilant in their movements/activities to avoid wounds that are difficult to heal for diabetic patients. Data mining techniques are typically used to detect diabetes with high confidence to avoid misdiagnoses with other chronic diseases whose symptoms are similar to diabetes. Hidden Naïve Bayes is one of the algorithms for classification, which works under a data-mining model based on the assumption of conditional independence of the traditional Naïve Bayes. The results from this research study, which was conducted on the Pima Indian Diabetes (PID) dataset collection, show that the prediction accuracy of the HNB classifier achieved 82%. As a result, the discretization method increases the performance and accuracy of the HNB classifier.


Assuntos
Algoritmos , Diabetes Mellitus , Humanos , Teorema de Bayes , Diabetes Mellitus/diagnóstico , Mineração de Dados , Povo Pima
5.
Healthcare (Basel) ; 10(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35885777

RESUMO

Given the current COVID-19 pandemic, medical research today focuses on epidemic diseases. Innovative technology is incorporated in most medical applications, emphasizing the automatic recognition of physical and emotional states. Most research is concerned with the automatic identification of symptoms displayed by patients through analyzing their body language. The development of technologies for recognizing and interpreting arm and leg gestures, facial features, and body postures is still in its early stage. More extensive research is needed using artificial intelligence (AI) techniques in disease detection. This paper presents a comprehensive survey of the research performed on body language processing. Upon defining and explaining the different types of body language, we justify the use of automatic recognition and its application in healthcare. We briefly describe the automatic recognition framework using AI to recognize various body language elements and discuss automatic gesture recognition approaches that help better identify the external symptoms of epidemic and pandemic diseases. From this study, we found that since there are studies that have proven that the body has a language called body language, it has proven that language can be analyzed and understood by machine learning (ML). Since diseases also show clear and different symptoms in the body, the body language here will be affected and have special features related to a particular disease. From this examination, we discovered that it is possible to specialize the features and language changes of each disease in the body. Hence, ML can understand and detect diseases such as pandemic and epidemic diseases and others.

6.
Healthcare (Basel) ; 10(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36554028

RESUMO

In recent decades, epidemic and pandemic illnesses have grown prevalent and are a regular source of concern throughout the world. The extent to which the globe has been affected by the COVID-19 epidemic is well documented. Smart technology is now widely used in medical applications, with the automated detection of status and feelings becoming a significant study area. As a result, a variety of studies have begun to focus on the automated detection of symptoms in individuals infected with a pandemic or epidemic disease by studying their body language. The recognition and interpretation of arm and leg motions, facial recognition, and body postures is still a developing field, and there is a dearth of comprehensive studies that might aid in illness diagnosis utilizing artificial intelligence techniques and technologies. This literature review is a meta review of past papers that utilized AI for body language classification through full-body tracking or facial expressions detection for various tasks such as fall detection and COVID-19 detection, it looks at different methods proposed by each paper, their significance and their results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA