Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Annu Rev Microbiol ; 75: 49-69, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038159

RESUMO

The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos
2.
Nucleic Acids Res ; 51(2): 982-996, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629257

RESUMO

The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.


Assuntos
Bactérias , Proteína 9 Associada à CRISPR , Glucuronídeos , Óperon , Humanos , Bactérias/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Regulação da Expressão Gênica , Glucuronídeos/metabolismo , Fatores de Transcrição/genética , Proteína 9 Associada à CRISPR/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38652096

RESUMO

A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Enterobacteriaceae , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Abelhas/microbiologia , RNA Ribossômico 16S/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano
4.
Artigo em Inglês | MEDLINE | ID: mdl-37436807

RESUMO

The diversity of bacteria associated with biopsy material obtained from patients with colorectal cancer was investigated using culture techniques. A novel bacterium, strain CC70AT, was isolated by diluting a sample of homogenized tissue in anaerobic medium, and then plating to yield a pure culture. Strain CC70AT was a Gram-positive, strictly anaerobic, motile, rod-shaped bacterium. Formate, but not acetate, was a fermentative end-product from growth in peptone-yeast extract and peptone-yeast-glucose broth. The G+C content of DNA from strain CC70AT was 34.9 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the phylum Bacillota. The closest described relatives of strain CC70AT were Cellulosilyticum lentocellum (93.3 %) and Cellulosilyticum ruminicola (93.3 and 91.9% sequence similarity across 16S rRNA gene, respectively). According to the data obtained in this work, strain CC70AT represents a novel bacterium belonging to a new genus for which the name Holtiella tumoricola gen. nov., sp. nov. is proposed. The type strain for our described novel species is CC70AT (=DSM 27931T= JCM 30568T).


Assuntos
Ácidos Graxos , Peptonas , Humanos , Ácidos Graxos/química , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Bactérias Gram-Positivas
5.
Anaerobe ; 80: 102718, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801248

RESUMO

OBJECTIVES: We set out to identify and characterize prophages within genomes of published Fusobacterium strains, and to develop qPCR-based methods to characterize intra- and extra-cellular induction of prophage replication in a variety of environmental contexts. METHODS: Various in silico tools were used to predict prophage presence across 105 Fusobacterium spp. Genomes. Using the example of the model pathogen, Fusobacterium nucleatum subsp. animalis strain 7-1, qPCR was used with DNase I treatment to determine induction of its 3 predicted prophages ɸFunu1, ɸFunu2, and ɸFunu3, across several conditions. RESULTS: 116 predicted prophage sequences were found and analyzed. An emerging association between the phylogenetic history of a Fusobacterium prophage and that of its host was detected, as was the presence of genes encoding putative host fitness factors (e.g. ADP-ribosyltransferases) in distinct subclusters of prophage genomes. For strain 7-1, a pattern of expression for ɸFunu1, ɸFunu2, and ɸFunu3 was established indicating that ɸFunu1 and É¸Funu2 are capable of spontaneous induction. I Salt and mitomycin C exposure were able to promote induction of ɸFunu2. A range of other biologically relevant stressors, including exposure to pH, mucin and human cytokines showed no or minimal induction of these same prophages. ɸFunu3 induction was not detected under tested conditions. CONCLUSION: The heterogeneity of Fusobacterium strains is matched by their prophages. While the role of Fusobacterium prophages in host pathogenicity remains unclear, this work provides the first overview of clustered prophage distribution among this enigmatic genus and describes an effective assay for quantifying mixed samples of prophages that cannot be detected by plaque assay.


Assuntos
Fusobacterium , Prófagos , Humanos , Prófagos/genética , Filogenia
6.
Anaerobe ; 82: 102758, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423597

RESUMO

OBJECTIVES: The purpose of the present study was to characterize co-aggregation interactions between isolates of Fusobacterium nucleatum subsp. animalis and other colorectal cancer (CRC)-relevant species. METHODS: Co-aggregation interactions were assessed by comparing optical density values following 2-h stationary strain co-incubations to strain optical density values when incubated alone. Co-aggregation was characterized between strains from a previously isolated, CRC biopsy-derived community and F. nucleatum subsp. animalis, a species linked to CRC and known to be highly aggregative. Interactions were also investigated between the fusobacterial isolates and strains sourced from alternate human gastrointestinal samples whose closest species match aligned with species in the CRC biopsy-derived community. RESULTS: Co-aggregation interactions were observed to be strain-specific, varying between both F. nucleatum subsp. animalis strains and different strains of the same co-aggregation partner species. F. nucleatum subsp. animalis strains were observed to co-aggregate strongly with several taxa linked to CRC: Campylobacter concisus, Gemella spp., Hungatella hathewayi, and Parvimonas micra. CONCLUSIONS: Co-aggregation interactions suggest the ability to encourage the formation of biofilms, and colonic biofilms, in turn, have been linked to promotion and/or progression of CRC. Co-aggregation between F. nucleatum subsp. animalis and CRC-linked species such as C. concisus, Gemella spp., H. hathewayi, and P. micra may contribute to both biofilm formation along CRC lesions and to disease progression.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Humanos , Fusobacterium nucleatum , Fusobacterium , Infecções por Fusobacterium/microbiologia , Neoplasias Colorretais/microbiologia
7.
Anaerobe ; 83: 102783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769703

RESUMO

OBJECTIVES: We set out to survey the capacities of bacterial isolates from the human gut microbiome to reduce common azo food dyes in vitro. METHODS: A total of 206 strains representative of 124 bacterial species and 6 phyla were screened in vitro using a simple azo dye decolorization assay. Strains which showed azoreductive activity were characterized by studies of azoreduction kinetics and bacterial growth. RESULTS: Several groups of gut bacteria, including ones not previously associated with azoreduction, reduced one or more of the four azo food dyes commonly used in Canada: Allura Red, Amaranth, Sunset Yellow, and Tartrazine. Strains within some species differed in their azoreductive capabilities. Some strains displayed evidence of effects on growth related to the presence of azo dyes and/or the products of their azoreduction. CONCLUSION: The continued widespread use of food azo dyes requires re-evaluation in light of the potential for disturbance of the gut microbial ecosystem resulting from azoreduction and the possibility of consequences for human health.


Assuntos
Microbioma Gastrointestinal , Humanos , Ecossistema , Compostos Azo/metabolismo , Bactérias/metabolismo , Corantes/metabolismo
8.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055943

RESUMO

Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.


Assuntos
Criação de Abelhas , Abelhas , Fermentação , Microbioma Gastrointestinal , Probióticos , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criação de Abelhas/métodos , Abelhas/efeitos dos fármacos , Abelhas/imunologia , Abelhas/microbiologia , Fermentação/imunologia , Microbioma Gastrointestinal/imunologia , Probióticos/farmacologia , Probióticos/uso terapêutico
9.
J Mol Cell Cardiol ; 149: 54-72, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961201

RESUMO

Myocardial infarction (MI) leading to heart failure (HF) is a major cause of death worldwide. Previous studies revealed that the circadian system markedly impacts cardiac repair post-MI, and that light is an important environmental factor modulating the circadian influence over healing. Recent studies suggest that gut physiology also affects the circadian system, but how it contributes to cardiac repair post-MI and in HF is not well understood. To address this question, we first used a murine coronary artery ligation MI model to reveal that an intact gut microbiome is important for cardiac repair. Specifically, gut microbiome disruption impairs normal inflammatory responses in infarcted myocardium, elevates adverse cardiac gene biomarkers, and leads to worse HF outcomes. Conversely, reconstituting the microbiome post-MI in mice with prior gut microbiome disruption improves healing, consistent with the notion that normal gut physiology contributes to cardiac repair. To investigate a role for the circadian system, we initially utilized circadian mutant Clock∆19/∆19 mice, revealing that a functional circadian mechanism is necessary for gut microbiome benefits on post-MI cardiac repair and HF. Finally, we demonstrate that circadian-mediated gut responses that benefit cardiac repair can be conferred by time-restricted feeding, as wake time feeding of MI mice improves HF outcomes, but these benefits are not observed in MI mice fed during their sleep time. In summary, gut physiology is important for cardiac repair, and the circadian system influences the beneficial gut responses to improve post-MI and HF outcomes.


Assuntos
Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/fisiopatologia , Animais , Proteínas CLOCK/metabolismo , Hemodinâmica , Inflamação/patologia , Leucócitos/patologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/microbiologia , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular/fisiologia
10.
J Physiol ; 598(11): 2137-2151, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134496

RESUMO

KEY POINTS: The vagus nerve has been implicated in mediating behavioural effects of the gut microbiota on the central nervous system. This study examined whether the secretory products of commensal gut bacteria can modulate the excitability of vagal afferent neurons with cell bodies in nodose ganglia. Cysteine proteases from commensal bacteria increased the excitability of vagal afferent neurons via activation of protease-activated receptor 2 and modulation of the voltage dependence of Na+ conductance activation. Lipopolysaccharide, a component of the cell wall of gram-negative bacteria, increased the excitability of nodose ganglia neurons via TLR4-dependent activation of nuclear factor kappa B. Our study identified potential mechanisms by which gut microbiota influences the activity of vagal afferent pathways, which may in turn impact on autonomic reflexes and behaviour. ABSTRACT: Behavioural studies have implicated vagal afferent neurons as an important component of the microbiota-gut-brain axis. However, the mechanisms underlying the ability of the gut microbiota to affect vagal afferent pathways are unclear. We examined the effect of supernatant from a community of 33 commensal gastrointestinal bacterial derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) on the excitability of mouse vagal afferent neurons. Perforated patch clamp electrophysiology was used to measure the excitability of dissociated nodose ganglion (NG) neurons. NG neuronal excitability was assayed by measuring the amount of current required to elicit an action potential, the rheobase. MET-1 supernatant increased the excitability of NG neurons by hyperpolarizing the voltage dependence of activation of Na+ conductance. The increase in excitability elicited by MET-1 supernatant was blocked by the cysteine protease inhibitor E-64 (30 nm). The protease activated receptor-2 (PAR2 ) antagonist (GB 83, 10 µm) also blocked the effect of MET-1 supernatant on NG neurons. Supernatant from Lactobacillus paracasei 6MRS, a component of MET-1, recapitulated the effect of MET-1 supernatant on NG neurons. Lastly, we compared the effects of MET-1 supernatant and lipopolysaccharide (LPS) from Escherichia coli 05:B5 on NG neuron excitability. LPS increased the excitability of NG neurons in a toll-like receptor 4 (TLR4 )-dependent and PAR2 -independent manner, whereas the excitatory effects of MET-1 supernatant were independent of TLR4 activation. Together, our findings suggest that cysteine proteases from commensal bacteria increase the excitability of vagal afferent neurons by the activation of PAR2 .


Assuntos
Microbioma Gastrointestinal , Gânglio Nodoso , Animais , Bactérias , Ecossistema , Camundongos , Neurônios , Neurônios Aferentes , Peptídeo Hidrolases , Nervo Vago
11.
Expert Rev Proteomics ; 17(2): 163-173, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32174200

RESUMO

Introduction: Metaproteomics is an established method to obtain a comprehensive taxonomic and functional view of microbial communities. After more than a decade, we are now able to describe the promise, reality, and perspectives of metaproteomics and provide useful information about the choice of method, applications, and potential improvement strategies.Areas covered: In this article, we will discuss current challenges of species and proteome coverage, and also highlight functional aspects of metaproteomics analysis of microbial communities with different levels of complexity. To do this, we re-analyzed data from microbial communities with low to high complexity (8, 72, 200 and >300 species). High species diversity leads to a reduced number of protein group identifications in a complex community, and thus the number of species resolved is underestimated. Ultimately, low abundance species remain undiscovered in complex communities. However, we observed that the main functional categories were better represented within complex microbiomes when compared to species coverage.Expert opinion: Our findings showed that even with low species coverage, metaproteomics has the potential to reveal habitat-specific functional features. Finally, we exploit this information to highlight future research avenues that are urgently needed to enhance our understanding of taxonomic composition and functions of complex microbiomes.


Assuntos
Metabolômica/métodos , Metagenômica/métodos , Microbiota , Proteômica/métodos , Redes e Vias Metabólicas , Metabolômica/normas , Metagenoma , Metagenômica/normas , Proteoma/genética , Proteoma/metabolismo , Proteômica/normas
12.
Methods ; 149: 31-41, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102990

RESUMO

The study of complex microbial communities has become a major research focus as mounting evidence suggests the pivotal role microbial communities play in host health and disease. Microbial communities of the gastrointestinal tract, known as the gut microbiota, have been implicated in aiding the host with vitamin biosynthesis, regulation of host energy metabolism, immune system development, and resistance to pathogen invasion. Conversely, disruptions of the gut microbiota have been linked to host morbidity, including the development of inflammatory diseases, metabolic disorders, increased cardiovascular risk, and increased risk of infectious diseases. However, studying the gut microbiota in humans and animals is challenging, as many microorganisms are fastidious with unique nutritional or environmental requirements that are often not met using conventional culture techniques. Bioreactors provide a unique solution to overcome some of the limitations of conventional culture techniques. Bioreactors have been used to propagate and establish complex microbial communities in vitro by recapitulating the physiological conditions found in the GI tract. These systems further our understanding of microbial physiology and facilitate our understanding of the impact of medications and xenobiotics on microbial communities. Here, we review the versatility and breadth of bioreactor systems that are currently available and how they are being used to study faecal and defined microbial communities. Bioreactors provide a unique opportunity to study complex microbial interactions and perturbations in vitro in a controlled environment without confounding biotic and abiotic variables.


Assuntos
Reatores Biológicos/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem , Antibacterianos/farmacologia , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos
13.
J Ren Nutr ; 29(1): 55-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30100156

RESUMO

OBJECTIVE: Toxic metabolites produced by the intestinal microbiome from animal proteins, carnitine (mainly from red meat), or phosphatidylcholine (mainly from egg yolk), have important adverse effects on cardiovascular disease. These are renally eliminated and may be termed gut-derived uremic toxins (GDUT). We hypothesized that even moderate renal impairment and intake of nutrient precursors would raise plasma levels of GDUT. DESIGN: A cohort study. SETTING: Academic medical center. SUBJECTS: Patients attending stroke prevention clinics at a university medical center were recruited. MAIN OUTCOME MEASURE: Nutrient intake was assessed by the 131-item Harvard Food Frequency Questionnaire; estimated glomerular filtration rate (eGFR) was caculated using the Chronic Kidney Disease-Epidemiology (EPI) equations. Plasma levels of trimethylamine n-oxide, p-cresyl sulfate, hippuric acid, p-cresyl glucuronide, pheny acetyl glutamine, and phenyl sulfate were measured by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. RESULTS: Among 316 patients recruited, the mean (standard deviation [SD]) age was 66.74 (10.42) years; 59.7% were men. Mean eGFR was 76.03 ± 20.01; 57 (18%) had eGFR<60 mL/min/1.73 m2. Plasma levels of all GDUT were significantly higher even with moderate reduction of eGFR. Nutrient intake affected plasma levels of some GDUT; the effects differed by eGFR above and below 60 mL/min/1.73 m2. Plasma levels were obtained fasting, so we probably underestimated the effect of nutrient intake. CONCLUSIONS: Even moderate impairment of renal function was associated with higher plasma levels of GDUT. This has dietary implications for patients at risk of atherosclerosis, particularly in those with impaired renal function (including the elderly): they should limit intake of animal protein, red meat, and egg yolk. It also points the way to novel approaches to vascular prevention, including more intensive dialysis, renal transplantation, and modification of the intestinal microbiome with probiotics or fecal transplantation.


Assuntos
Dieta/métodos , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Insuficiência Renal/sangue , Insuficiência Renal/fisiopatologia , Toxinas Biológicas/sangue , Idoso , Cromatografia Líquida , Estudos de Coortes , Cresóis/sangue , Feminino , Trato Gastrointestinal/microbiologia , Glucuronídeos/sangue , Hipuratos/sangue , Humanos , Rim/fisiopatologia , Masculino , Espectrometria de Massas , Metilaminas/sangue , Ésteres do Ácido Sulfúrico/sangue
14.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29089436

RESUMO

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Assuntos
Gânglios Espinais/enzimologia , Microbioma Gastrointestinal/fisiologia , Granzimas/administração & dosagem , Neurônios/enzimologia , Simbiose/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/microbiologia , Peptídeo Hidrolases/administração & dosagem , Simbiose/efeitos dos fármacos
15.
J Biol Chem ; 292(49): 20240-20254, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29021252

RESUMO

Fusobacterium nucleatum is an oral pathogen that is linked to multiple human infections and colorectal cancer. Strikingly, F. nucleatum achieves virulence in the absence of large, multiprotein secretion systems (Types I, II, III, IV, and VI), which are widely used by Gram-negative bacteria for pathogenesis. By contrast, F. nucleatum strains contain genomic expansions of Type V secreted effectors (autotransporters) that are critical for host cell adherence, invasion, and biofilm formation. Here, we present the first characterization of an F. nucleatum Type Vd phospholipase class A1 autotransporter (strain ATCC 25586, gene FN1704) that we hereby rename Fusobacterium phospholipase autotransporter (FplA). Biochemical analysis of multiple Fusobacterium strains revealed that FplA is expressed as a full-length 85-kDa outer membrane-embedded protein or as a truncated phospholipase domain that remains associated with the outer membrane. Whereas the role of Type Vd secretion in bacteria remains unidentified, we show that FplA binds with high affinity to host phosphoinositide-signaling lipids, revealing a potential role for this enzyme in establishing an F. nucleatum intracellular niche. To further analyze the role of FplA, we developed an fplA gene knock-out strain, which will guide future in vivo studies to determine its potential role in F. nucleatum pathogenesis. In summary, using recombinant FplA constructs, we have identified a biochemical toolbox that includes lipid substrates for enzymatic assays, potent inhibitors, and chemical probes to detect, track, and characterize the role of Type Vd secreted phospholipases in Gram-negative bacteria.


Assuntos
Fusobacterium nucleatum/enzimologia , Fosfolipases A1/química , Sistemas de Secreção Tipo V/química , Proteínas de Bactérias , Fusobacterium nucleatum/patogenicidade , Proteínas de Membrana , Fosfatidilinositóis , Fosfolipases A1/metabolismo , Fosfolipases A1/fisiologia , Virulência
16.
Am J Physiol Endocrinol Metab ; 315(6): E1087-E1097, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130151

RESUMO

A 2-day workshop organized by the National Institutes of Health and U.S. Department of Agriculture included 16 presentations focused on the role of diet in alterations of the gastrointestinal microbiome, primarily that of the colon. Although thousands of research projects have been funded by U.S. federal agencies to study the intestinal microbiome of humans and a variety of animal models, only a minority addresses dietary effects, and a small subset is described in sufficient detail to allow reproduction of a study. Whereas there are standards being developed for many aspects of microbiome studies, such as sample collection, nucleic acid extraction, data handling, etc., none has been proposed for the dietary component; thus this workshop focused on the latter specific point. It is important to foster rigor in design and reproducibility of published studies to maintain high quality and enable designs that can be compared in systematic reviews. Speakers addressed the influence of the structure of the fermentable carbohydrate on the microbiota and the variables to consider in design of studies using animals, in vitro models, and human subjects. For all types of studies, strengths and weaknesses of various designs were highlighted, and for human studies, comparisons between controlled feeding and observational designs were discussed. Because of the lack of published, best-diet formulations for specific research questions, the main recommendation is to describe dietary ingredients and treatments in as much detail as possible to allow reproduction by other scientists.


Assuntos
Dieta , Fibras na Dieta , Microbioma Gastrointestinal , Projetos de Pesquisa , Animais , Humanos , Modelos Animais , Estado Nutricional
17.
Crit Rev Food Sci Nutr ; 58(2): 194-207, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27247080

RESUMO

Food preferences and dietary habits are heavily influenced by taste perception. There is growing interest in characterizing taste preferences based on genetic variation. Genetic differences in the ability to perceive key tastes may impact eating behavior and nutritional intake. Therefore, increased understanding of taste biology and genetics may lead to new personalized strategies, which may prevent or influence the trajectory of chronic disease risk. Recent advances show that single nucleotide polymorphisms (SNPs) in the CD36 fat taste receptor are linked to differences in fat perception, fat preference, and chronic-disease biomarkers. Genetic variation in the sweet taste receptor T1R2 has been shown to alter sweet taste preferences, eating behaviors, and risk of dental caries. Polymorphisms in the bitter taste receptor T2R38 have been shown to influence taste for brassica vegetables. Individuals that intensely taste the bitterness of brassica vegetables ("supertasters") may avoid vegetable consumption and compensate by increasing their consumption of sweet and fatty foods, which may increase risk for chronic disease. Emerging evidence also suggests that the role of genetics in taste perception may be more impactful in children due to the lack of cultural influence compared to adults. This review examines the current knowledge of SNPs in taste receptors associated with fat, sweet, bitter, umami, and salt taste modalities and their contributions to food preferences, and chronic disease. Overall, these SNPs demonstrate the potential to influence food preferences and consequently health.


Assuntos
Comportamento Alimentar , Preferências Alimentares , Modelos Biológicos , Estado Nutricional , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Papilas Gustativas/fisiologia , Animais , Biomarcadores/metabolismo , Dieta/efeitos adversos , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Paladar
19.
Int J Med Microbiol ; 306(5): 280-289, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27020116

RESUMO

The metabolic functionality of a microbial community is a key to the understanding of its inherent ecological processes and the interaction with the host. However, the study of the human gut microbiota is hindered by the complexity of this ecosystem. One way to resolve this issue is to derive defined communities that may be cultured ex vivo in bioreactor systems and used to approximate the native ecosystem. Doing so has the advantage of experimental reproducibility and ease of sampling, and furthermore, in-depth analysis of metabolic processes becomes highly accessible. Here, we review the use of bioreactor systems for ex vivo modelling of the human gut microbiota with respect to analysis of the metabolic output of the microbial ecosystem, and discuss the possibility of mechanistic insights using these combined techniques. We summarize the different platforms currently used for metabolomics and suitable for analysis of gut microbiota samples from a bioreactor system. With the help of representative datasets obtained from a series of bioreactor runs, we compare the outputs of both NMR and mass spectrometry based approaches in terms of their coverage, sensitivity and quantification. We also discuss the use of untargeted and targeted analyses in mass spectroscopy and how these techniques can be combined for optimal biological interpretation. Potential solutions for linking metabolomic and phylogenetic datasets with regards to active, key species within the ecosystem will be presented.


Assuntos
Reatores Biológicos/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Metabolômica/métodos , Microbiota , Modelos Teóricos , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA