Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecol Appl ; 32(1): e02480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674399

RESUMO

In this era of global environmental change and rapid regime shifts, managing core areas that species require to survive and persist is a grand challenge for conservation. Wildlife monitoring data are often limited or local in scale. The emerging ability to map and track spatial regimes (i.e., the spatial manifestation of state transitions) using advanced geospatial vegetation data has the potential to provide earlier warnings of habitat loss because many species of conservation concern strongly avoid spatial regime boundaries. Using 23 yr of data for the lek locations of Greater Prairie-Chicken (Tympanuchus cupido; GPC) in a remnant grassland ecosystem, we demonstrate how mapping changes in the boundaries between grassland and woodland spatial regimes provide a spatially explicit early warning signal for habitat loss for an iconic and vulnerable grassland-obligate known to be highly sensitive to woody plant encroachment. We tested whether a newly proposed metric for the quantification of spatial regimes captured well-known responses of GPC to woody plant expansion into grasslands. Resource selection functions showed that the grass:woody spatial regime boundary strength explained the probability of 80% of relative lek occurrence, and GPC strongly avoided grass:woody spatial regime boundaries at broad scales. Both findings are consistent with well-known expectations derived from GPC ecology. These results provide strong evidence for vegetation-derived delineations of spatial regimes to serve as generalized signals of early warning for state transitions that have major consequences to biodiversity conservation. Mapping spatial regime boundaries over time provided interpretable early warnings of habitat loss. Woody plant regimes displaced grassland regimes starting from the edges of the study area and constricting inward. Correspondingly, the relative probability of lek occurrence constricted in space. Similarly, the temporal trajectory of spatial regime boundary strength increased over time and moved closer to the observed limit of GPC lek site usage relative to grass:woody boundary strength. These novel spatial metrics allow managers to rapidly screen for early warning signals of spatial regime shifts and adapt management practices to defend and grow habitat cores at broad scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Conservação dos Recursos Naturais/métodos , Pradaria , Poaceae , Madeira
2.
J Environ Manage ; 324: 116359, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206652

RESUMO

Historically, relying on plot-level inventories impeded our ability to quantify large-scale change in plant biomass, a key indicator of conservation practice outcomes in rangeland systems. Recent technological advances enable assessment at scales appropriate to inform management by providing spatially comprehensive estimates of productivity that are partitioned by plant functional group across all contiguous US rangelands. We partnered with the Sage Grouse and Lesser Prairie-Chicken Initiatives and the Nebraska Natural Legacy Project to demonstrate the ability of these new datasets to quantify multi-scale changes and heterogeneity in plant biomass following mechanical tree removal, prescribed fire, and prescribed grazing. In Oregon's sagebrush steppe, for example, juniper tree removal resulted in a 21% increase in one pasture's productivity and an 18% decline in another. In Nebraska's Loess Canyons, perennial grass productivity initially declined 80% at sites invaded by trees that were prescriptively burned, but then fully recovered post-fire, representing a 492% increase from nadir. In Kansas' Shortgrass Prairie, plant biomass increased 4-fold (966,809 kg/ha) in pastures that were prescriptively grazed, with gains highly dependent upon precipitation as evidenced by sensitivity of remotely sensed estimates (SD ± 951,308 kg/ha). Our results emphasize that next-generation remote sensing datasets empower land managers to move beyond simplistic control versus treatment study designs to explore nuances in plant biomass in unprecedented ways. The products of new remote sensing technologies also accelerate adaptive management and help communicate wildlife and livestock forage benefits from management to diverse stakeholders.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores , Gado
3.
New Phytol ; 231(6): 2150-2161, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105783

RESUMO

Dryland net primary productivity (NPP) is sensitive to temporal variation in precipitation (PPT), but the magnitude of this 'temporal sensitivity' varies spatially. Hypotheses for spatial variation in temporal sensitivity have often emphasized abiotic factors, such as moisture limitation, while overlooking biotic factors, such as vegetation structure. We tested these hypotheses using spatiotemporal models fit to remote-sensing data sets to assess how vegetation structure and climate influence temporal sensitivity across five dryland ecoregions of the western USA. Temporal sensitivity was higher in locations and ecoregions dominated by herbaceous vegetation. By contrast, much less spatial variation in temporal sensitivity was explained by mean annual PPT. In fact, ecoregion-specific models showed inconsistent associations of sensitivity and PPT; whereas sensitivity decreased with increasing mean annual PPT in most ecoregions, it increased with mean annual PPT in the most arid ecoregion, the hot deserts. The strong, positive influence of herbaceous vegetation on temporal sensitivity indicates that herbaceous-dominated drylands will be particularly sensitive to future increases in precipitation variability and that dramatic changes in cover type caused by invasions or shrub encroachment will lead to changes in dryland NPP dynamics, perhaps independent of changes in precipitation.


Assuntos
Mudança Climática , Ecossistema , Clima , América do Norte
4.
Glob Chang Biol ; 26(5): 2944-2955, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31961042

RESUMO

Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, 'human exposure', that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non-protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non-protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non-protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mudança Climática , Atividades Humanas , Humanos , América do Norte
5.
Bioscience ; 70(1): 90-96, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949318

RESUMO

Conservationists are increasingly convinced that coproduction of science enhances its utility in policy, decision-making, and practice. Concomitant is a renewed reliance on privately owned working lands to sustain nature and people. We propose a coupling of these emerging trends as a better recipe for conservation. To illustrate this, we present five elements of coproduction, contrast how they differ from traditional approaches, and describe the role of scientists in successful partnerships. Readers will find coproduction more demanding than the loading dock approach to science delivery but will also find greater rewards, relevance, and impact. Because coproduction is novel and examples of it are rare, we draw on our roles as scientists within the US Department of Agriculture-led Sage Grouse Initiative, North America's largest effort to conserve the sagebrush ecosystem. As coproduction and working lands evolve, traditional approaches will be replaced in order to more holistically meet the needs of nature and people.

6.
Ecol Appl ; 29(3): e01862, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706573

RESUMO

Rangelands cover 40-50% of the Earth's terrestrial surface. While often characterized by limited, yet variable resource availability, rangelands are vital for humans, providing numerous ecosystem goods and services. In the conterminous United States (CONUS), the dominant component of rangeland conservation is a network of public rangelands, concentrated in the west. Public rangelands are interspersed with private and tribal rangelands resulting in a complex mosaic of land tenure and management priorities. We quantify ownership patterns of rangeland production at multiple scales across CONUS and find that both total production and average productivity of private rangelands is more than twice that of public and tribal rangelands. At finer scales, private rangelands are consistently more productive than their public counterparts. We also demonstrate an inverse relationship between public rangeland acreage and productivity. While conserving acreage is crucial to rangeland conservation, just as critical are broad-scale ecological patterns and processes that sustain ecosystem services. Across CONUS, ownership regimes capture distinct elements of these patterns and services, demonstrated through disparate production dynamics. As ownership determines the range of feasible conservation actions, and the technical and financial resources available to implement them, understanding ownership-production dynamics is critical for effective and sustained conservation of rangeland ecosystem services.


Assuntos
Ecossistema , Propriedade , Conservação dos Recursos Naturais , Ecologia , Humanos , Software
7.
Ecol Evol ; 12(12): e9586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514548

RESUMO

Animal movement patterns are affected by complex interactions between biotic and abiotic landscape conditions, and these patterns are being altered by weather variability associated with a changing climate. Some animals, like the American plains bison (Bison bison L.; hereafter, plains bison), are considered keystone species, thus their response to weather variability may alter ecosystem structure and biodiversity patterns. Many movement studies of plains bison and other ungulates have focused on point-pattern analyses (e.g., resource-selection) that have provided information about where these animals move, but information about when or why these animals move is limited. For example, information surrounding the influence of weather on plains bison movement in response to weather is limited but has important implications for their conservation in a changing climate. To explore how movement distance is affected by weather patterns and drought, we utilized 12-min GPS data from two of the largest plains bison herds in North America to model their response to weather and drought parameters using generalized additive mixed models. Distance moved was best predicted by air temperature, wind speed, and rainfall. However, air temperature best explained the variation in distance moved compared to any other single parameter we measured, predicting a 48% decrease in movement rates above 28°C. Moreover, severe drought (as indicated by 25-cm depth soil moisture) better predicted movement distance than moderate drought. The strong influence of weather and drought on plains bison movements observed in our study suggest that shifting climate and weather will likely affect plains bison movement patterns, further complicating conservation efforts for this wide-ranging keystone species. Moreover, changes in plains bison movement patterns may have cascading effects for grassland ecosystem structure, function, and biodiversity. Plains bison and grassland conservation efforts need to be proactive and adaptive when considering the implications of a changing climate on bison movement patterns.

8.
Nat Commun ; 10(1): 742, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765694

RESUMO

Historical and future trends in net primary productivity (NPP) and its sensitivity to global change are largely unknown because of the lack of long-term, high-resolution data. Here we test whether annually resolved tree-ring stable carbon (δ13C) and oxygen (δ18O) isotopes can be used as proxies for reconstructing past NPP. Stable isotope chronologies from four sites within three distinct hydroclimatic environments in the eastern United States (US) were compared in time and space against satellite-derived NPP products, including the long-term Global Inventory Modeling and Mapping Studies (GIMMS3g) NPP (1982-2011), the newest high-resolution Landsat NPP (1986-2015), and the Moderate Resolution Imaging Spectroradiometer (MODIS, 2001-2015) NPP. We show that tree-ring isotopes, in particular δ18O, correlate strongly with satellite NPP estimates at both local and large geographical scales in the eastern US. These findings represent an important breakthrough for estimating interannual variability and long-term changes in terrestrial productivity at the biome scale.


Assuntos
Isótopos de Carbono/metabolismo , Ecossistema , Isótopos de Oxigênio/metabolismo , Estações do Ano , Árvores/metabolismo , Algoritmos , Conservação dos Recursos Naturais/métodos , Geografia , Modelos Biológicos , Imagens de Satélites/métodos , Árvores/crescimento & desenvolvimento , Estados Unidos
9.
Ecol Evol ; 8(24): 12492-12505, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619560

RESUMO

The North American semi-arid sagebrush, Artemisia spp., biome exhibits considerable climatic complexity driving dynamic spatiotemporal shifts in primary productivity. Greater and Gunnison sage-grouse, Centrocercus urophasianus and C. minimus, are adapted to patterns of resource intermittence and rely on stable adult survival supplemented by occasional recruitment pulses when climatic conditions are favorable. Predictions of intensifying water scarcity raise concerns over new demographic bottlenecks impacting sage-grouse populations in drought-sensitive landscapes. We estimate biome-wide mesic resource productivity from 1984 to 2016 using remote sensing to identify patterns of food availability influencing selective pressures on sage-grouse. We linked productivity to abiotic factors to examine effects of seasonal drought across time, space, and land tenure, with findings partitioned along gradients of ecosystem water balance within Great Basin, Rocky Mountains and Great Plains regions. Precipitation was the driver of mesic resource abundance explaining ≥70% of variance in drought-limited vegetative productivity. Spatiotemporal shifts in mesic abundance were apparent given biome-wide climatic trends that reduced precipitation below three-quarters of normal in 20% of years. Drought sensitivity structured grouse populations wherein landscapes with the greatest uncertainty in mesic abundance and distribution supported the fewest grouse. Privately owned lands encompassed 40% of sage-grouse range, but contained a disproportional 68% of mesic resources. Regional drought sensitivity identified herein acted as ecological minimums to influence differences in landscape carrying capacity across sage-grouse range. Our model depictions likely reflect a new normal in water scarcity that could compound impacts of demographic bottlenecks in Great Basin and Great Plains. We conclude that long-term population maintenance depends on a diversity of drought resistant mesic resources that offset climate driven variability in vegetative productivity. We recommend a holistic public-private lands approach to mesic restoration to offset a deepening risk of water scarcity.

10.
Ecol Evol ; 8(1): 356-364, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321877

RESUMO

Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse (Centrocercus urophasianus; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

11.
PLoS One ; 10(9): e0137882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394226

RESUMO

It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.


Assuntos
Ecossistema , Galliformes/fisiologia , Pradaria , Comportamento Sexual Animal/fisiologia , Animais , Conservação dos Recursos Naturais , Feminino , Incêndios , Geografia , Modelos Logísticos , Masculino , Oklahoma , Densidade Demográfica , Dinâmica Populacional
12.
Glob Chang Biol ; 19(6): 1875-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505266

RESUMO

In many grasslands, grazing by large native or introduced ungulates drives ecosystem structure and function. The behavior of these animals is important as it directs the spatial effects of grazing. To the degree that temperature drives spatial components of foraging, understanding how changes in climate alter grazing behavior will provide guidance for the conservation of ecosystem goods and services. We determined the behavioral response of native bison (Bison bison) and introduced cattle (Bos taurus) to temperature in tallgrass prairie within the Great Plains, USA. We described the thermal environment by measuring operative temperature (the temperature perceived by animals) through space and time. Site selection preferences of ungulates were quantified using resource selection functions. Woody vegetation in tallgrass prairie provided a cooler thermal environment for large ungulates, decreasing operative temperature up to 16 °C in the heat of the summer. Cattle began to seek thermal refugia at lower air temperatures (24 °C) by selecting areas closer to woody vegetation and water sources. Bison, however, sought refugia within wooded areas at higher air temperatures (36 °C), which occurred much less frequently. Both species became more attracted to riparian areas as air temperature increased, with preferences increasing tenfold during the hottest periods. As predicted warming occurs across the Great Plains and other grasslands, grazing behavior and subsequent grazing effects will be altered. Riparian areas, particularly those with both water and woody vegetation, will receive greater utilization and selection by large ungulates. The use of native grazers for conservation or livestock production may mitigate negative effects caused by increased temperatures.


Assuntos
Artiodáctilos , Mudança Climática , Conservação dos Recursos Naturais , Animais , Artiodáctilos/fisiologia , Comportamento Animal
13.
Ecol Evol ; 1(2): 132-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22393490

RESUMO

The interactions between fire and grazing are widespread throughout fire-dependent landscapes. The utilization of burned areas by grazing animals establishes the fire-grazing interaction, but the preference for recently burned areas relative to other influences (water, topography, etc.) is unknown. In this study, we determine the strength of the fire-grazing interaction by quantifying the influence of fire on ungulate site selection. We compare the preference for recently burned patches relative to the influence of other environmental factors that contribute to site selection; compare that preference between native and introduced ungulates; test relationships between area burned and herbivore preference; and determine forage quality and quantity as mechanisms of site selection. We used two large ungulate species at two grassland locations within the southern Great Plains, USA. At each location, spatially distinct patches were burned within larger areas through time, allowing animals to select among burned and unburned areas. Using fine scale ungulate location data, we estimated resource selection functions to examine environmental factors in site selection. Ungulates preferred recently burned areas and avoided areas with greater time since fire, regardless of the size of landscape, herbivore species, or proportion of area burned. Forage quality was inversely related to time since fire, while forage quantity was positively related. We show that fire is an important component of large ungulate behavior with a strong influence on site selection that drives the fire-grazing interaction. This interaction is an ecosystem process that supersedes fire and grazing as separate factors, shaping grassland landscapes. Inclusion of the fire-grazing interaction into ecological studies and conservation practices of fire-prone systems will aid in better understanding and managing these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA