RESUMO
CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.
Assuntos
Influenza Humana , Tuberculose , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Influenza Humana/metabolismo , Pulmão/patologia , Receptores de Quimiocinas/metabolismo , Tuberculose/patologiaRESUMO
OBJECTIVES: This study aimed to evaluate endophytic fungi isolated from Tocoyena bullata and Humiria balsamifera plant species for their antimycobacterial and anti-inflammatory activities, focusing on severe pulmonary tuberculosis cases which are often associated with exacerbated inflammation. METHODS: Mycobacterium suspensions were incubated with the samples for 5 days. RAW 264.7 macrophages stimulated with LPS were also incubated with them for 24 h to assess the inhibition of inflammatory mediator production and cytotoxicity. C57BL/6 mice were infected with Mtb M299 and treated for 15 days with lasiodiplodin (Lasio). KEY FINDINGS: Endophytic fungus Sordaria tamaensis, obtained from T. bullata, was the most promising. Its ethanolic extract impaired mycobacterial growth with MIC50 (µg/ml): 1.5 ± 0.6 (BCG), 66.8 ± 0.1 (H37Rv) and 80.0 ± 0.1 (M299). (R)-(+)-Lasio showed MIC50 92.2 ± 1.8 µg/ml (M299). In addition, Lasio was able to inhibit NO, IL-1ß and TNF-α production and was not cytotoxic for macrophages. M. tuberculosis-infected C57BL/6 animals treated by Lasio reduced the number of acid-fast bacilli, lung pathology, leucocyte influx and proinflammatory cytokine production in the lungs. The class IIa fructose 1,6-bisphosphate aldolase was the predicted hypothetical target of Lasio. CONCLUSIONS: (R)-(+)-Lasio stood out as a promising anti-TB compound, exhibiting anti-inflammatory and antimycobacterial effects, as well as low cytotoxicity.