Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 15: 243, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25030031

RESUMO

BACKGROUND: The PCR technique and its variations have been increasingly used in the clinical laboratory and recent advances in this field generated new higher resolution techniques based on nucleic acid denaturation dynamics. The principle of these new molecular tools is based on the comparison of melting profiles, after denaturation of a DNA double strand. Until now, the secondary structure of single-stranded nucleic acids has not been exploited to develop identification systems based on PCR. To test the potential of single-strand RNA denaturation as a new alternative to detect specific nucleic acid variations, sequences from viruses of the Totiviridae family were compared using a new in silico melting curve approach. This family comprises double-stranded RNA virus, with a genome constituted by two ORFs, ORF1 and ORF2, which encodes the capsid/RNA binding proteins and an RNA-dependent RNA polymerase (RdRp), respectively. RESULTS: A phylogenetic tree based on RdRp amino acid sequences was constructed, and eight monophyletic groups were defined. Alignments of RdRp RNA sequences from each group were screened to identify RNA regions with conserved secondary structure. One region in the second half of ORF2 was identified and individually modeled using the RNAfold tool. Afterwards, each DNA or RNA sequence was denatured in silico using the softwares MELTSIM and RNAheat that generate melting curves considering the denaturation of a double stranded DNA and single stranded RNA, respectively. The same groups identified in the RdRp phylogenetic tree were retrieved by a clustering analysis of the melting curves data obtained from RNAheat. Moreover, the same approach was used to successfully discriminate different variants of Trichomonas vaginalis virus, which was not possible by the visual comparison of the double stranded melting curves generated by MELTSIM. CONCLUSION: In silico analysis indicate that ssRNA melting curves are more informative than dsDNA melting curves. Furthermore, conserved RNA structures may be determined from analysis of individuals that are phylogenetically related, and these regions may be used to support the reconstitution of their phylogenetic groups. These findings are a robust basis for the development of in vitro systems to ssRNA melting curves detection.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Polimorfismo Genético , RNA de Cadeia Dupla/química , RNA Viral/química , Totiviridae/genética , Temperatura de Transição , Sequência de Aminoácidos , Proteínas do Capsídeo/metabolismo , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Desnaturação de Ácido Nucleico , Fases de Leitura Aberta/genética , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de DNA , Software , Totiviridae/classificação
2.
PLoS One ; 10(3): e0119871, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789746

RESUMO

Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.


Assuntos
Albuminas 2S de Plantas/genética , Proteínas de Transporte/genética , Quitinases/genética , Moringa oleifera/genética , Proteínas de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Quitina/genética , Quitina/metabolismo , Quitinases/classificação , Sementes/química , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA