RESUMO
Periodontitis is a long-term condition affecting up to half of the population globally and causing significant impacts on life quality. Successful management depends on taking life-long ownership of the condition by those affected. There is a wealth of research to inform on management options. However, most of the research has been designed by professional experts with outcomes to gauge benefits and harms based on parameters that inform on the disease process but which might not be informative to support decision-making in people with lived experience (PWLE) of periodontal ill-health (including both patients and carers). The importance of relevant outcomes is highlighted in the concept of the "expert patient" which aims to strengthen the capacity of PWLE to make health-care choices that are important for them, elements of which are likely to be already familiar to many clinicians delivering periodontal health care. Therefore, the voice and collaboration of PWLE in research are recognised as crucial to developing high quality, relevant evidence especially for long-term conditions. In this paper, we review what is known about the relevance of treatment outcomes to PWLE. We also examine the degree to which PWLE have been involved in identifying outcomes that are important to them as well as the diversity and therefore representativeness of PWLE recruited for studies. We consider why having more relevant outcomes could enhance the expertise of PWLE in managing their periodontitis. We then conclude with key learnings from our review which we hope will encourage more rapid development of these initiatives in periodontology for the benefit of global health and wellbeing.
RESUMO
AIM: To systematically review the literature to evaluate the recurrence of disease of people in long-term supportive periodontal care (SPC), previously treated for periodontitis, and determine the effect of different methods of managing recurrence. The review focused on stage IV periodontitis. MATERIALS AND METHODS: An electronic search was conducted (until May 2020) for prospective clinical trials. Tooth loss was the primary outcome. RESULTS: Twenty-four publications were retrieved to address recurrence of disease in long-term SPC. Eight studies were included in the meta-analyses for tooth loss, and three studies for disease progression/recurrence (clinical attachment level [CAL] loss ≥2 mm). For patients in SPC of 5-20 years, prevalence of losing more than one tooth was 9.6% (95% confidence interval [CI] 5%-14%), while experiencing more than one site of CAL loss ≥2 mm was 24.8% (95% CI 11%-38%). Six studies informed on the effect of different methods of managing recurrence, with no clear evidence of superiority between methods. No data was found specifically for stage IV periodontitis. CONCLUSIONS: A small proportion of patients with stage III/IV periodontitis will experience tooth loss in long-term SPC (tendency for greater prevalence with time). Regular SPC appears to be important for reduction of tooth loss. No superior method to manage disease recurrence was found.
Assuntos
Periodontite , Perda de Dente , Humanos , Assistência de Longa Duração , Periodontite/terapia , Estudos Prospectivos , RecidivaRESUMO
Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells.IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.
Assuntos
Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Produtos do Gene gag/genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Macaca fascicularis , Masculino , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Carga ViralRESUMO
GB virus B (GBV-B) is a new world monkey-associated flavivirus used to model acute hepatitis C virus (HCV) infection. Critical for evaluation of antiviral or vaccine approaches is an understanding of the effect of HCV on the liver at different stages of infection. In the absence of longitudinal human tissue samples at defined time points, we have characterized changes in tamarins. As early as 2 weeks post-infection histological changes were noticeable, and these were established in all animals by 6 weeks. Despite high levels of liver-associated viral RNA, there was reversal of hepatic damage on clearance of peripheral virus though fibrosis was demonstrated in four tamarins. Notably, viral RNA burden in the liver dropped to near undetectable or background levels in all animals which underwent a second viral challenge, highlighting the efficacy of the immune response in removing foci of replication in the liver. These data add to the knowledge of GBV-B infection in New World primates which can offer attractive systems for the testing of prophylactic and therapeutic treatments and the evaluation of their utility in preventing or reversing liver pathology.
RESUMO
Immunocompromised patients are at significant risk from BKV reactivation, causing allograft dysfunction or loss. Patient management relies on viral DNA monitoring, using a viral load cut-off to reduce immunosuppression. However, consistency between viral load detection assays cannot be achieved without an effective means of standardisation. We have worked with the WHO's Expert Committee on Biological Standardisation to develop suitable reference materials and undertake an international collaborative study to establish the 1st WHO International Standard for BKV detection assays. We report on the evaluation of two lyophilised candidate cell culture derived, whole virus preparations, undertaken by 33 expert laboratories. By employing the principles of biological standardisation, we show improved agreement across laboratories, demonstrating the suitability of either candidate for use as a primary order calibrant. Candidate 14/212 was established by the WHO ECBS with an assigned potency of 7.2 log10 International Units/mL intended for the calibration of BKV secondary reference materials.
Assuntos
Vírus BK , DNA Viral , Técnicas de Amplificação de Ácido Nucleico/normas , Carga Viral/normas , Calibragem , DNA Viral/análise , DNA Viral/química , Humanos , Padrões de Referência , Organização Mundial da SaúdeRESUMO
The emergence of Zika virus (ZIKV) in the Americas has resulted in increased nucleic acid amplification testing (NAT) of clinical samples and blood donations. New molecular diagnostic assays have been developed resulting in a corollary requirement for ZIKV reference material. To address this we have produced and calibrated two African lineage ZIKV reference materials: a highly concentrated secondary standard (NIBSC: 16/110) and a lower concentration external quality control (QC) reagent (NIBSC: 16/124) and compared their performance in three ZIKV NAT assays in relation with the First International Standard (IS) for Zika Virus NAT assays (PEI: 11468/16). In summary the African lineage ZIKV reference materials were detected by all three assays. The ZIKV lineage did not affect the performance of the secondary standard. The external QC reagent (16/124) was detected by all three assays highlighting its suitability for use as a low positive control to monitor assay performance on a regular basis. The relative potency of 16/110 to the IS was 5.49E+06IU/mL (95% CI: 1.46E+06-2.06E+07) and 16/124 to 16/110 was 8.36E+03 (95% CI: 7.83E+03-8.92E+03). The global availability of African lineage ZIKV reference materials will facilitate standardization of ZIKV molecular diagnostic assays between and within laboratories whilst preserving the IS.
Assuntos
Doadores de Sangue , Técnicas de Amplificação de Ácido Nucleico/normas , Infecção por Zika virus , Zika virus/genética , Animais , Chlorocebus aethiops , Humanos , Padrões de Referência , Células Vero , Infecção por Zika virus/sangue , Infecção por Zika virus/genéticaRESUMO
The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
Assuntos
Proteínas de Transporte/genética , Eritrócitos/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Proteínas de Protozoários/genética , Animais , Células Cultivadas , Humanos , Macaca fascicularis , Macaca mulatta , Malária , Polimorfismo de Nucleotídeo Único , ZoonosesRESUMO
In order to evaluate the role of persisting virus replication during occult phase immunisation in the live attenuated SIV vaccine model, a novel SIVmac239Δnef variant (SIVrtTA) genetically engineered to replicate in the presence of doxycycline was evaluated for its ability to protect against wild-type SIVmac239. Indian rhesus macaques were vaccinated either with SIVrtTA or with SIVmac239Δnef. Doxycycline was withdrawn from 4 of 8 SIVrtTA vaccinates before challenge with wild-type virus. Unvaccinated challenge controls exhibited ~107 peak plasma viral RNA copies/ml persisting beyond the acute phase. Six vaccinates, four SIVmac239Δnef and two SIVrtTA vaccinates exhibited complete protection, defined by lack of wild-type viraemia post-challenge and virus-specific PCR analysis of tissues recovered post-mortem, whereas six SIVrtTA vaccinates were protected from high levels of viraemia. Critically, the complete protection in two SIVrtTA vaccinates was associated with enhanced SIVrtTA replication in the immediate post-acute vaccination period but was independent of doxycycline status at the time of challenge. Mutations were identified in the LTR promoter region and rtTA gene that do not affect doxycycline-control but were associated with enhanced post-acute phase replication in protected vaccinates. High frequencies of total circulating CD8+T effector memory cells and a higher total frequency of SIV-specific CD8+ mono and polyfunctional T cells on the day of wild-type challenge were associated with complete protection but these parameters were not predictive of outcome when assessed 130 days after challenge. Moreover, challenge virus-specific Nef CD8+ polyfunctional T cell responses and antigen were detected in tissues post mortem in completely-protected macaques indicating post-challenge control of infection. Within the parameters of the study design, on-going occult-phase replication may not be absolutely required for protective immunity.
Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia , Animais , Imuno-Histoquímica , Imunofenotipagem , Macaca mulatta , Reação em Cadeia da Polimerase , Vacinas AtenuadasRESUMO
Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.
Assuntos
Adaptação Biológica/fisiologia , Técnicas de Cultura/métodos , Eritrócitos/parasitologia , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/genética , Adaptação Biológica/genética , Animais , Sequência de Bases , Clonagem Molecular , Criopreservação , Primers do DNA/genética , Genótipo , Humanos , Macaca fascicularis , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus-host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.
Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Animais , Macaca fascicularis , Macrófagos/virologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Superinfecção/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologiaRESUMO
BACKGROUND: Cynomolgus macaques are indigenous to Asia occupying a range of geographical areas. A non-indigenous population established on Mauritius approximately 500 years ago. Mauritian cynomolgus macaques are recognised as having low genetic diversity compared to Indonesian macaques, from which they originated. As cynomolgus macaques are widely used as a biomedical model, there have been many studies of their genetic relationships. However, population diversity and relationships have only been assessed through analysis of either the hypervariable region I or II separately within the D-loop region of the mitochondrial genome in these macaques. METHODS: Using sequencing, we defined haplotypes encompassing the full D-loop sequence for Mauritian and Indonesian cynomolgus macaques. RESULTS: We evaluated the haplotype relationships by constructing a median-joining network based on full-length D-loop sequences, which has not been reported previously. CONCLUSION: Our data allow a complete D-loop haplotype, including a hereto unreported polymorphic region, to be defined to aid the resolution of populations of cynomolgus macaques and which highlights the value in analysing both D-loop hypervariable regions in concert.
Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/genética , Haplótipos/genética , Macaca fascicularis/genética , Animais , Sequência de Bases , Variação Genética , Indonésia , Maurício , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Polimorfismo Genético/genética , Análise de Sequência de DNARESUMO
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
RESUMO
During the COVID-19 pandemic, antibody-based vaccines targeting the SARS-CoV-2 spike glycoprotein were the focus for development because neutralizing antibodies were associated with protection against the SARS-CoV-2 infection pre-clinically and in humans. While deploying these spike-based vaccines saved millions of lives worldwide, it has become clear that the immunological mechanisms of protection against severe disease are multifaceted and involve non-neutralizing antibody components. Here, we describe a novel pan-sarbecovirus T-cell vaccine, ChAdOx1.COVconsv12, designed to complement and broaden the protection of spike vaccines. The vaccine immunogen COVconsv12 employs the two regions in the viral proteome most conserved among sarbecoviruses, which are delivered by replication-deficient vector ChAdOx1. It directs T cells towards epitopes shared among sarbecoviruses including evolving SARS-CoV-2 variants. Here, we show that ChAdOx1.COVconsv12 induced broad T-cell responses in the BALB/c and C57BL/6 mice. In the Syrian hamster challenge model, ChAdOx1.COVconsv12 alone did not protect against the SARS-CoV-2 infection, but when co-administered with 1/50th of the ChAdOx1 nCoV-19 spike vaccine protective dose, faster recovery and lower oral swab viral load were observed. Induction of CD8+ T cells may decrease COVID-19 severity and extend the T-cell response coverage of variants to match the known (and as yet unknown) members of the ß-coronavirus family.
RESUMO
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus causing a debilitating febrile illness with rheumatic disease symptoms of arthralgia and arthritis. Since its spread outside of Africa in 2005, it continues to cause outbreaks and disseminates into new territories. Intervention strategies are urgently required, including vaccination and antiviral approaches. To test efficacy, the use of small animal models is required. Two mouse strains, A129, with a deficiency in their type-I interferon (IFN) receptor, and C57BL/6 are widely used. A direct comparison of these strains alongside the wild-type parental strain of the A129 mice, 129Sv/Ev, was undertaken to assess clinical disease progression, viral loads in key tissues, histological changes and levels of sera biomarkers. Our results confirm the severe disease course in A129 mice which was not observed in the parental 129Sv/Ev strain. Of the two wild-type strains, viral loads were higher in 129Sv/Ev mice compared to C57BL/6 counterparts. Our results have established these models and parameters for the future testing of vaccines and antiviral approaches.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Modelos Animais de Doenças , Progressão da Doença , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Carga Viral , Animais , Febre de Chikungunya/virologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/patologia , Vírus Chikungunya/genética , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/imunologia , Camundongos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Feminino , Camundongos KnockoutRESUMO
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of cases. CCHFV is listed as a priority pathogen by the World Health Organization (WHO) and there are currently no widely-approved vaccines. Defining a serological correlate of protection against CCHFV infection would support the development of vaccines by providing a 'target threshold' for pre-clinical and clinical immunogenicity studies to achieve in subjects and potentially obviate the need for in vivo protection studies. We therefore sought to establish titratable protection against CCHFV using pooled human convalescent plasma, in a mouse model. Convalescent plasma collected from seven individuals with a known previous CCHFV virus infection were characterised using binding antibody and neutralisation assays. All plasma recognised nucleoprotein and the Gc glycoprotein, but some had a lower Gn glycoprotein response by ELISA. Pooled plasma and two individual donations from convalescent donors were administered intraperitoneally to A129 mice 24 h prior to intradermal challenge with CCHFV (strain IbAr10200). A partial protective effect was observed with all three convalescent plasmas characterised by longer survival post-challenge and reduced clinical score. These protective responses were titratable. Further characterisation of the serological reactivities within these samples will establish their value as reference materials to support assay harmonisation and accelerate vaccine development for CCHFV.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Testes de Neutralização , Plasma/imunologia , MasculinoRESUMO
BACKGROUND: Live attenuated SIV induces potent protection against superinfection with virulent virus; however the mechanism of this vaccine effect is poorly understood. Such knowledge is important for the development of clinically acceptable vaccine modalities against HIV. RESULTS: Using a novel, doxycycline dependent, replication-competent live-attenuated SIVmac239Δnef (SIV-rtTAΔnef), we show that under replication-permissive conditions SIV-rtTAΔnef is fully viable. Twelve rhesus macaques were infected with a peak plasma vRNA on average two log10 lower than in 6 macaques infected with unconditionally replication-competent SIVΔnef. Consistent with the attenuated phenotype of the viruses the majority of animals displayed low or undetectable levels of viraemia by 42-84 days after infection. Next, comparison of circulating T cells before and after chronic infection with parental SIVΔnef revealed a profound global polarisation toward CD28-CCR7- T-effector memory 2 (TEM2) cells within CD95+CD4+ and CD95+CD8+ populations. Critically, a similar effect was seen in the CD95+ CD4+ population and to somewhat lesser extent in the CD95+ CD8+ population of SIV-rtTAΔnef chronically infected macaques that were maintained on doxycycline, but was not seen in animals from which doxycycline had been withdrawn. The proportions of gut-homing T-central memory (TCM) and TEM defined by the expression of α4ß7 and CD95 and differential expression of CD28 were increased in CD4 and CD8 cells under replication competent conditions and gut-homing CD4 TCM were also significantly increased under non-permissive conditions. TEM2 polarisation was seen in the small intestines of animals under replication permissive conditions but the effect was less pronounced than in the circulation. Intracellular cytokine staining of circulating SIV-specific T cells for IL-2, IFN-γ, TNF-α and IL-17 showed that the extent of polyfunctionality in CD4 and CD8 T cells was associated with replication permissivity; however, signature patterns of cytokine combinations were not distinguishable between groups of macaques. CONCLUSION: Taken together our results show that the global T memory cell compartment is profoundly skewed towards a mature effector phenotype by attenuated SIV. Results with the replication-conditional mutant suggest that maintenance of this effect, that may be important in vaccine design, might require persistence of replicating virus.
Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Animais , Anti-Infecciosos/farmacologia , Doxiciclina/farmacologia , Memória Imunológica/fisiologia , Intestino Delgado/virologia , Macaca mulatta , Fenótipo , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Superinfecção/prevenção & controle , Regulação para Cima , Vacinas Atenuadas/imunologia , Viremia , Replicação ViralRESUMO
Polymorphism in the TRIM5α/TRIMcyp gene, which interacts with the lentiviral capsid, has been shown to impact on simian immunodeficiency virus (SIV) replication in certain macaque species. Here, in the context of a live-attenuated SIV vaccine study conducted in Mauritian-origin cynomolgus macaques (MCM), we demonstrate upregulation of TRIM5α expression in multiple lymphoid tissues immediately following vaccination. Despite this, the restricted range of TRIM5α genotypes and lack of TRIMcyp variants had no or only limited impact on the replication kinetics in vivo of either the SIVmac viral vaccine or wild-type SIVsmE660 challenge. Additionally, there appeared to be no impact of TRIM5α genotype on the outcome of homologous or heterologous vaccination/challenge studies. The limited spectrum of TRIM5α polymorphism in MCM appears to minimize host bias to provide consistency of replication for SIVmac/SIVsm viruses in vivo, and therefore on vaccination and pathogenesis studies conducted in this species.
Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Proteínas de Transporte/genética , Genótipo , Macaca fascicularis , Dados de Sequência Molecular , RNA/genética , RNA/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Especificidade da Espécie , Fatores de Tempo , Vacinas Virais , Replicação ViralRESUMO
The infection dynamics and pathology of a retrovirus may be altered by one or more additional viruses. To investigate this further, this study characterized proviral load, biodistribution and the immune response in Macaca fascicularis naturally infected with combinations of simian retrovirus type 2 (SRV-2) and simian T-cell lymphotropic virus type I (STLV-I). As the mesenteric lymph node (MLN) and the spleen have been implicated previously in response to retroviral infection, the morphology and immunopathology of these tissues were assessed. The data revealed a significant change in SRV-2 biodistribution in macaques infected with STLV-I. Pathological changes were greater in the MLN and spleen of STLV-I-infected and co-infected macaques compared with the other groups. Immune-cell populations in co-infected macaque spleens were increased and there was an atypical distribution of B-cells. These findings suggest that the infection dynamics of each virus in a co-infected individual may be affected to a different extent and that STLV-I appears to be responsible for enhancing the biodistribution and associated pathological changes in SRV-2 in macaques.
Assuntos
Infecções por Deltaretrovirus/veterinária , Macaca fascicularis , Vírus dos Macacos de Mason-Pfizer/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus Linfotrópico T Tipo 1 de Símios/fisiologia , Animais , Infecções por Deltaretrovirus/imunologia , Infecções por Deltaretrovirus/virologia , Trato Gastrointestinal/virologia , Rim/virologia , Tecido Linfoide/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga ViralRESUMO
BACKGROUND: Foamy viruses are non-pathogenic in vivo and naturally infect all species of non-human primates (NHP). Simian foamy viruses (SFV) are highly prevalent in both free ranging and captive NHP but few longitudinal studies have been performed to assess the prevalence and biodistribution of SFV within captive NHP. METHOD: LTR and pol gene along with Gag antibody detection were undertaken to identify infection in a cohort of over 80 captive macaques. RESULTS: The prevalence of SFV was between 64% and 94% in different groups. Access to 23 dam-infant pairs allowed us to reveal horizontal transfer as the dominant route of SFV transmission in our cohort. Further, analysis of SFV from a range of tissues and blood revealed that macaques as young as six months old can be infected and that proviral biodistribution increases with age. CONCLUSIONS: These are the first data of this type for a captive cohort of cynomolgus macaques.
Assuntos
Transmissão de Doença Infecciosa , Macaca fascicularis/virologia , Infecções por Retroviridae/veterinária , Spumavirus/classificação , Spumavirus/genética , Animais , Anticorpos Antivirais/sangue , Análise por Conglomerados , Feminino , Produtos do Gene gag/imunologia , Produtos do Gene pol/genética , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Prevalência , RNA Viral/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Análise de Sequência de DNA , Spumavirus/isolamento & purificação , Sequências Repetidas TerminaisRESUMO
BACKGROUND: Reactivation of JC and BK polyomaviruses during immunosuppression can lead to adverse clinical outcomes. In renal transplant recipients, BKV-associated nephropathy can result in graft loss, while in patients with autoimmune disorders, prolonged immunomodulatory drug use can cause rare onset of progressive multifocal leukoencephalopathy due to JCV reactivation. In such patients, accurate BK and JC viral load determinations by molecular technologies are important for diagnosis and clinical management; however, comparability across centres requires effective standardisation of diagnostic molecular detection systems. In October 2015, the WHO Expert Committee for Biological Standardisation (ECBS) established the 1st WHO International Standards (ISs) for use as primary-order calibrants for BKV and JCV nucleic acid detection. Two multi-centre collaborative studies confirmed their utility in harmonising agreement across the wide range of BKV and JCV assays, respectively. Previous Illumina-based deep sequence analysis of these standards, however, identified deletions in different regions, including the large T-antigen coding region. Hence, further detailed characterization was warranted. METHODS: Comprehensive sequence characterisation of each preparation using short- and long-read next-generation sequencing technologies was performed with additional corroborative independent digital PCR (dPCR) determinations. Potential error rates associated with long-read sequencing were minimised by applying rolling circle amplification (RCA) protocols for viral DNA (circular dsDNA), generating a full validation of sequence identity and composition and delineating the integrity of full-length BK and JC genomes. RESULTS: The analysed genomes displayed subpopulations frequently characterised by complex gene re-arrangements, duplications and deletions. CONCLUSIONS: Despite the recognition of such polymorphisms using high-resolution sequencing methodologies, the ability of these reference materials to act to enhance assay harmonisation did not appear significantly impacted, based on data generated by the 2015 WHO collaborative studies, but highlights cautionary aspects of IS generation and commutability for clinical molecular diagnostic application.