Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449344

RESUMO

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Assuntos
COVID-19 , Lonicera , Ácido Oleanólico , Plantas Medicinais , Saponinas , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/genética , Saponinas/química , Genômica , Evolução Molecular
2.
Anal Chem ; 94(8): 3590-3599, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171578

RESUMO

Monosaccharides play important roles in biological processes. Sensitive and accurate analyses of monosaccharides remain challenging because of their high hydrophilicities and poor ionization efficiencies. Here, we developed a paired derivatization approach with H/D-labeled hydroxylamines for simultaneous quantification of 12 monosaccharides by liquid chromatography tandem mass spectrometry (LC-MS/MS). O-(4-Methoxybenzyl)hydroxylamine hydrochloride (4-MOBHA·HCl) showed higher derivatization efficiency for monosaccharides compared to six other hydroxylamine analogues. The derivatization of monosaccharides was readily achieved in an aqueous solution. Furthermore, the deuterium-labeled isotope reagent, d3-4-MOBHA·HCl, was newly synthesized to stably label monosaccharides to improve its accuracy and precision in complex matrix analysis. As a result, 12 monosaccharides were rapidly detected by LC-MS/MS within 16 min with significant improvements in chromatographic separation and retention time. The detection sensitivity increased by 83 to 1600-fold with limits of quantitation ranging from 0.25 to 3.00 fmol. With the paired derivatization strategy, the monosaccharides could be accurately quantified with good linearity (R2 > 0.99) and satisfactory accuracy (recoveries: 85-110%). Using this method, we achieved sensitive and accurate quantification of the monosaccharide composition of herbal polysaccharides and the change in monosaccharide levels in human cell lines under physiopathological conditions. More importantly, the developed method was able to differentiate between the levels of the monosaccharides in fecal samples of human ulcerative colitis (UC) patients and UC mice compared to their respective controls. The differential monosaccharides determined in human feces provided a good diagnostic performance in distinguishing the UC patients from healthy individuals, showing potential for clinical application.


Assuntos
Monossacarídeos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Humanos , Hidroxilamina , Hidroxilaminas , Indicadores e Reagentes , Camundongos , Monossacarídeos/análise , Espectrometria de Massas em Tandem/métodos
3.
J Proteome Res ; 20(7): 3734-3748, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34080425

RESUMO

Salvianolic acid B (Sal B), the main water-soluble compound in Salvia miltiorrhiza, is known to exhibit anti-inflammatory activity, however, the underlying mechanism(s) is not completely uncovered. In this study, Sal B inhibited lipopolysaccharide (LPS)-induced M1 activation and promoted the transformation of macrophages from M1- to M2-type polarization. The altered lipid profiles of LPS-induced RAW 264.7 macrophages were partly restored by Sal B treatment. At the proteomic level, a total of 5612 proteins were identified and 432 were significantly changed in macrophages under LPS treatment. The differential proteins were classified into four clusters according to their expression level in blank, LPS, and Sal B groups. LPS-induced proteins in Cluster IV including Kif14, Mincle, and Sec62 were significantly recovered to almost normal levels by Sal B treatment. Use of knockdown Mincle or picetannol (inhibitor of Syk) led to significant reductions in the gene expressions of IL-1ß, iNOS, and IL-12 and the release of NO. The converse was, however, observed for overexpressed Mincle. In addition, LPS- or trehalose-6,6-dibehenate-induced phosphorylation of Syk and PKCδ was decreased by Sal B treatment. These results suggest that Sal B inhibition of LPS-induced inflammation might be through inhibition of the Mincle-Syk-PKCδ signaling pathway.


Assuntos
Macrófagos , Proteômica , Anti-Inflamatórios/farmacologia , Benzofuranos , Lipopolissacarídeos/farmacologia
4.
Plant J ; 104(3): 781-799, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772407

RESUMO

Salvianolic acids (SalAs), a group of secondary metabolites in Salvia miltiorrhiza, are widely used for treating cerebrovascular diseases. Their biosynthesis is modulated by a variety of abiotic factors, including ultraviolet-B (UV-B) irradiation; however, the underlying mechanisms remain largely unknown. Here, an integrated metabolomic, proteomic, and transcriptomic approach coupled with transgenic analyses was employed to dissect the mechanisms underlying UV-B irradiation-induced SalA biosynthesis. Results of metabolomics showed that 28 metabolites, including 12 SalAs, were elevated in leaves of UV-B-treated S. miltiorrhiza. Meanwhile, the contents of several phytohormones, including jasmonic acid and salicylic acid, which positively modulate the biosynthesis of SalAs, also increased in UV-B-treated S. miltiorrhiza. Consistently, 20 core biosynthetic enzymes and numerous transcription factors that are involved in SalA biosynthesis were elevated in treated samples as indicated by a comprehensive proteomic analysis. Correlation and gene expression analyses demonstrated that the NAC1 gene, encoding a NAC transcriptional factor, was positively involved in UV-B-induced SalA biosynthesis. Accordingly, overexpression and RNA interference of NAC1 increased and decreased SalA contents, respectively, through regulation of key biosynthetic enzymes. Furthermore, ChIP-qPCR and Dual-LUC assays showed that NAC1 could directly bind to the CATGTG and CATGTC motifs present in the promoters of the SalA biosynthesis-related genes PAL3 and TAT3, respectively, and activate their expression. Our results collectively demonstrate that NAC1 plays a crucial role in UV-B irradiation-induced SalA biosynthesis. Taken together, our findings provide mechanistic insights into the UV-B-induced SalA biosynthesis in S. miltiorrhiza, and shed light on a great potential for the development of SalA-abundant varieties through genetic engineering.


Assuntos
Proteínas de Plantas/genética , Polifenóis/biossíntese , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/efeitos da radiação , Alcenos , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polifenóis/genética , Proteômica/métodos , Interferência de RNA , Salvia miltiorrhiza/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Regulação para Cima
5.
Pharmacol Res ; 152: 104630, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911245

RESUMO

The incidence of type 2 diabetes (T2D) is gradually assuming pandemic proportions, leaving in its trail increased morbidity and mortality. This trend is mainly credited to the adoption of unhealthy lifestyles resulting in increased cases of overweightness and obesity. Traditionally, T2D is considered a metabolic disorder epitomized by prolonged elevated levels of glucose due to insulin resistance and/or decreased insulin secretion resulting from pancreatic ß-cells dysfunction. Our current understanding of the disease implicates the adipose tissue in the induction of low-grade chronic inflammation which in turn initiates a cascade of anti- and pro-inflammatory responses by the immune system ultimately damaging the ß-cells of the pancreas. The central role of inflammation in the initiation and progress of T2D is now receiving a lot of attention. This review gives an overview of the centrality of inflammation in the pathogenesis of T2D and focuses on the therapeutic potential of ginsenoside Rg1. This review is borne out of the hypothesis that, if inflammation is an absolute precondition to T2D initiation and progress, then attenuation of inflammation should hold therapeutic promise. In line with this, we highlight the anti-diabetic, hepatoprotective and neuroprotective effects of ginsenoside Rg1 among others and proffer suggestions for future studies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Animais , Humanos
6.
J Sci Food Agric ; 100(6): 2585-2599, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975406

RESUMO

BACKGROUND: Most agricultural crops contain high moisture content (80-95% wet basis (wb)) which makes them very susceptible to microbial damage leading to shorter shelf-life and high postharvest losses. The high perishability of these agricultural products requires preservation techniques to prolong their shelf-lives. Drying remains an important component of processing in this regard. Therefore, any pretreatment methods for drying agricultural product that decreases the moisture content and minimizes drying time by conserving the quality of the crop product is of prime significance. This article is a comprehensive review of recent developments of non-thermal pretreatment (NTP) methods. A summary of their significance, emerging and innovative methods of this technology together with its applications and limitations are discussed. This article further examines the environmental impact of NTP techniques. RESULTS: NTP techniques, such as high pressure, ultrasound, pulsed electric field and osmotic dehydration methods are essential operations for pre-dehydration of agricultural products prior to drying. These techniques can avoid the deleterious effects of heat on nutritive value, colour and flavour of agricultural products compared to thermal pretreatments. They also enhance the inactivation of the enzymes, improve energy efficiency and mass transfer, reduce processing time, preserve bioactive compounds, improve drying kinetics and drying rate, minimize enzymatic browning, and enhance product quality. CONCLUSION: These findings will provide a better understanding of different NTP methods and also make available more information for selecting pretreatment techniques for drying of agricultural products. © 2020 Society of Chemical Industry.


Assuntos
Produtos Agrícolas , Dessecação/métodos , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos
7.
J Sci Food Agric ; 100(7): 3164-3172, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096216

RESUMO

BACKGROUND: The rhizome of ginger (Zingiber officinale Roscoe) is one of the most patronized spices worldwide and plays an important role in folklore medicine. In this study, we aimed to determine the quality of ginger samples from representative West African (Ghana, Nigeria) and East African (Uganda, Kenya) countries. By that, we also implicitly sought to determine the probable influence of location of cultivation (and the intrinsic growth conditions) on the quality of the samples. The ginger samples were pretreated by osmosonication prior to relative humidity convective drying and analyzed for differences in their metabolomes, total phenolic content (TPC) and total flavonoid content (TFC), antioxidant activities, sensory characteristics and volatile compounds composition (via electronic-nose determination). RESULTS: The outcome of our study showed marked source-dependent differences in the metabolomes of the samples as captured by a metabolomics approach. Based on the findings of the metabolomics study, 6-gingerol content was quantified and found to be higher in the samples of West African origin. Also, the samples from the two West African countries contained higher levels of bioactive phytochemicals as evinced by the results of TPC, TFC, e-nose analysis, and antioxidant activities. They also gave better sensory attributes. CONCLUSION: In summary, for all parameters assessed, and on a country-by-country basis, the general quality trend observed was: Ghana > Nigeria > Uganda > Kenya. All results taken together, our findings at least in part, point to the influence of geographical regions of cultivation on the quality of the ginger rhizomes. © 2020 Society of Chemical Industry.


Assuntos
Compostos Fitoquímicos/química , Zingiber officinale/química , África , Antioxidantes/química , Dessecação , Flavonoides/química , Manipulação de Alimentos , Humanos , Osmose , Fenóis/química , Extratos Vegetais/química , Rizoma/química , Paladar
8.
Circulation ; 137(13): 1374-1390, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29212895

RESUMO

BACKGROUND: As new biomarkers of coronary artery diseases (CAD) emerge via metabolomics, the underlying functional mechanisms remain to be elucidated. Functional metabolomics aims to translate metabolomics-derived biomarkers to disease mechanisms. METHODS: A cohort of 2324 patients who underwent coronary angiography from 4 independent centers was studied. A combination of ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry in the negative ion mode was used for untargeted analysis of metabolites in plasma. Significant differential metabolites were identified by cross-comparisons with and within CAD types, including normal coronary artery, nonobstructvie coronary atherosclerosis, stable angina, unstable angina, and acute myocardial infarction. A tandem liquid chromatography-mass spectrometry-based approach using isotope-labeled standard addition was subsequently performed for targeted analysis of the metabolic marker N-acetylneuraminic acid (Neu5Ac). A functional metabolomics strategy was proposed to investigate the role of Neu5Ac in the progression of CAD by using in vitro and in vivo models. RESULTS: We identified a total of 36 differential metabolites, 35 of which were confirmed with reference compounds. Elevation of Neu5Ac was observed in plasma during CAD progression in center 1 (P=4.0e-64, n=2019) and replicated in 3 independent centers (n=305). The increased level of Neu5Ac in plasma was confirmed by accurate targeted quantification. Mechanistically, Neu5Ac was able to trigger myocardial injury in vitro and in vivo by activation of the Rho/Rho-associated coiled-coil containing protein kinase signaling pathway through binding to RhoA and Cdc42, but not Rac1. Silencing neuraminidase-1, the enzyme that regulates Neu5Ac generation, ameliorated oxygen-glucose deprivation-induced injury in cardiomyocytes and ligation/isoprenaline-induced myocardial ischemia injury in rats. Pharmacological inhibition of neuraminidase by anti-influenza drugs, oseltamivir and zanamivir, also protected cardiomyocytes and the heart from myocardial injury. CONCLUSIONS: Functional metabolomics identified a key role for Neu5Ac in acute myocardial infarction, and targeting neuraminidase-1 may represent an unrecognized therapeutic intervention for CAD.


Assuntos
Doença da Artéria Coronariana/patologia , Metabolômica , Ácido N-Acetilneuramínico/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Angiografia Coronária , Doença da Artéria Coronariana/metabolismo , Humanos , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Neuraminidase/metabolismo , Oseltamivir/farmacologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Int J Cancer ; 144(4): 868-876, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318614

RESUMO

Metabolomics offers a noninvasive methodology to identify metabolic markers for pathogenesis and diagnosis of diseases. This work aimed to characterize circulating metabolic signatures of benign thyroid nodule (BTN) and papillary thyroid carcinoma (PTC) via serum-plasma matched metabolomics. A cohort of 1,540 serum-plasma matched samples and 114 tissues were obtained from healthy volunteers, BTN and PTC patients enrolled from 6 independent centers. Untargeted metabolomics was determined by liquid chromatography-quadrupole time-of-flight mass spectrometric and multivariate statistical analyses. The use of serum-plasma matched samples afforded a broad-scope detection of 1,570 metabolic features. Metabolic phenotypes revealed significant pattern differences for healthy versus BTN and healthy versus PTC. Perturbed metabolic pathways related mainly to amino acid and lipid metabolism. It is worth noting that, BTN and PTC showed no significant differences but rather overlap in circulating metabolic signatures, and this observation was replicated in all study centers. For differential diagnosis of healthy versus thyroid nodules (BTN + PTC), a panel of 6 metabolic markers, namely myo-inositol, α-N-phenylacetyl-L-glutamine, proline betaine, L-glutamic acid, LysoPC(18:0) and LysoPC(18:1) provided area under the curve of 97.68% in the discovery phase and predictive accuracies of 84.78-98.18% in the 4 validation centers. Taken together, serum-plasma matched metabolomics showed significant differences in circulating metabolites for healthy versus nodules but not for BTN versus PTC. Our results highlight the true metabolic nature of thyroid nodules, and potentially decrease overtreatment that exposes patients to unnecessary risks.


Assuntos
Biomarcadores Tumorais/sangue , Metabolômica/métodos , Câncer Papilífero da Tireoide/sangue , Neoplasias da Glândula Tireoide/sangue , Nódulo da Glândula Tireoide/sangue , Adolescente , Adulto , Idoso , Criança , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/metabolismo , Adulto Jovem
10.
Molecules ; 24(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126018

RESUMO

Aside from its multiple medicinal uses, the fruit of Xylopia aethiopica is widely used in Africa as food. Herein, we characterize the protein profiles, mineral content and bioactive phytochemical composition of the seeds of this plant sourced in Ghana and Nigeria. Using label-free proteomics, a total of 677 proteins were identified, with 260 found in the Ghana-sourced samples while 608 proteins were detected in the samples from Nigeria. However, 114 proteins were common between the samples from the two countries, among which 48 were significantly changed. Bioinformatics and functional analyses revealed that the differential levels of the proteins were mainly linked to pathways involved amino acids metabolism and biosynthesis. The significantly changed proteins related mainly to catalytic activity and carbon metabolism. The samples from Nigeria also exhibited superior qualities in terms of their antioxidant effects, and total phenolic and flavonoid content. Finally, only the content of Na varied to a statistically significant level. This study lends support to its culinary use and hints towards the impact of location of cultivation on the quality of the seeds. There is however need for further mechanistic investigations to unravel the underlying reasons for the observed differences.


Assuntos
Minerais/análise , Compostos Fitoquímicos/análise , Proteínas de Plantas/metabolismo , Proteômica/métodos , Xylopia/classificação , Antioxidantes/análise , Flavonoides/análise , Regulação da Expressão Gênica de Plantas , Gana , Nigéria , Fenóis/análise , Extratos Vegetais/análise , Sementes/química , Sementes/metabolismo , Especificidade da Espécie , Xylopia/química , Xylopia/metabolismo
11.
J Sep Sci ; 39(16): 3195-204, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27333871

RESUMO

The green and efficient preparation of natural products from biomass is considered an important area of interest in pharmaceutical applications. In this study, we aimed to provide a practical example with a popular traditional Chinese medicine, Anemarrhenae Rhizome, and showcase the orthogonal use of column chromatography with polyamide and macroporous adsorption resins to selectively concentrate and efficiently purify four bioactive compounds: neomangiferin (NMF), mangiferin (MF), timosaponin B-II (TS B-II), and timosaponin A-III (TS A-III). First, polyamide T60-100 was employed to fractionalize the crude extracts of Anemarrhenae Rhizome. Macroporous resin HPD400 was subsequently used to purify the xanthones and steroidal saponins. Under the optimized conditions, 2.31 g of NMF, 4.10 g of MF, 12.87 g of TS B-II, and 2.78 g of TS A-III were prepared from 1 kg of crude materials, and their purities were 90.0, 92.15, 90.8, and 92.61%, respectively. The results of this study indicate that the combined column chromatography with polyamide and macroporous adsorption resins can be referenced as a green and efficient alternative for large-scale purification of bioactive ingredients from herbal raw materials.


Assuntos
Anemarrhena/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Resinas Vegetais/química , Rizoma/química , Adsorção , Cromatografia Líquida de Alta Pressão/instrumentação , Medicamentos de Ervas Chinesas/isolamento & purificação , Porosidade
12.
Expert Opin Drug Deliv ; 21(2): 347-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406829

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are evolving as a prominent determinant in cancer occurrence and development and are functionally found to suppress T cells in cancer. Not much research is done regarding its involvement in viral infections. This research was designed to investigate the role of MDSCs in hepatitis B virus (HBV) infection and how targeting these cells with our novel all-trans retinoic acid encapsulated liposomal formulation could improve immunotherapy in C57BL/6 mice. METHODS: Ten micrograms (10 µg) of plasmid adeno-associated virus (pAAV/HBV 1.2, genotype A) was injected hydrodynamically via the tail vein of C57BL/6 mice. An all-trans retinoic acid encapsulated liposomal formulation (L-ATRA) with sustained release properties was used in combination with tenofovir disoproxil fumarate (TDF), a nucleotide analog reverse transcriptase inhibitor (nRTI) to treat the HBV infection. The L-ATRA formulation was given at a dose of 5 mg/kg intravenously (IV) twice a week. The TDF was given orally at 30 mg/kg daily. RESULTS: Our results revealed that L-ATRA suppresses MDSCs in HBV infected mice and enhanced T-cell proliferation in vitro. In vivo studies showed higher and improved immunotherapeutic effect in mice that received L-ATRA and TDF concurrently in comparison with the groups that received monotherapy. Lower HBV DNA copies, lower concentrations of HBsAg and HBeAg, lower levels of ALT and AST and less liver damage were seen in the mice that received the combination therapy of L-ATRA + TDF. CONCLUSIONS: In effect, targeting MDSCs with the combination of L-ATRA and TDF effectively reduced mMDSC and improved immunotherapy in the HBV infected mice. Targeting MDSCs could provide a breakthrough in the fight against hepatitis B virus infection.


Assuntos
Hepatite B Crônica , Hepatite B , Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Vírus da Hepatite B/genética , Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Antígenos E da Hepatite B/farmacologia , Antígenos E da Hepatite B/uso terapêutico , Resultado do Tratamento , Camundongos Endogâmicos C57BL , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Hepatite B/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Neoplasias/tratamento farmacológico
13.
Food Chem ; 447: 139039, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518619

RESUMO

Euphorbiae Humifusae Herba (EHH) was provided with medicinal and edible uses, but frequently was adulterated with its closely related species. Hence, this study sought to identify EHH via an integrated approach comprising data from its morphological evaluation, HPLC analysis, comparative plastomes analysis and allele-specific PCR identification. First, the morphological characteristics of 8 subgenus Chamaesyce plants were summarized. Then, HPLC analysis showed that 18 batches of EHH were adulterated or unqualified. Furthermore, the plastomes of the 8 subg. Chamaesyce species were analyzed. Phylogenetic analysis revealed a sister relationship among the 8 subg. Chamaesyce species. The allele-specific PCR authentication was developed by the nucleotide polymorphisms (SNPs) and insertions or deletions (InDels) analysis. The results of allele-specific PCR showed that 27 batches of EHH were adulterated, indicating that the superior sensitivity of molecular authentication over the other methods used. This study provided a reference for rational use and phylogenetic research of EHH.


Assuntos
Euphorbia , Filogenia , Euphorbia/classificação
14.
J Pharm Sci ; 112(8): 2029-2036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36638960

RESUMO

Stability studies of active pharmaceutical ingredients (APIs) remain an essential quality requirement of the pharmaceutical industry. Stability data of an API could guide in the choice of its processing technique, packaging method and storage conditions. Here, we sought to determine the stability or otherwise of xylopic acid (XA) under various stress conditions as stipulated by the International Conference on Harmonization (ICH). XA is a diterpene kaurene isolate of the African spice, Xylopia aethiopica (Annonaceae) that is credited with diverse biological activities. XA was subjected to various stress conditions (hydrolytic, oxidative, photolytic and thermal) and its degradation products characterized. Seven degradation products were identified and tentatively characterized by LC-MS/MS analysis. The probable degradation pathways for the seven degradation products were then predicted. Using a simple and validated UHPLC-DAD method, the degradation kinetics of XA under the different stress conditions were comprehensively assessed. The degradation of XA under all the stress conditions followed the first order reaction kinetics. XA was found to be less stable in strongly acidic or strongly basic solutions as well as in an oxidizing agent (hydrogen peroxide). The stability of XA was also found to be pH- and temperature-dependent. Its stability was however not affected by UV-light irradiation.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cinética , Estabilidade de Medicamentos , Oxirredução , Hidrólise , Cromatografia Líquida de Alta Pressão
15.
Front Pharmacol ; 14: 1227574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456746

RESUMO

The Annonaceae is one of the plant families with members that are credited with numerous pharmacological functions. Among the group of compounds responsible for these bioactivities are the ent-kaurane diterpenoids. The ent-kauranes are a group of 20-Carbon, tetracyclic diterpenoids that are widely distributed in other plant families including the Annonaceae family. This mini-review focuses mainly on the ent-kaurane diterpenoids isolated from the Annonaceae family, delineates the various biological activities of these compounds, and highlights the research gaps that exist for further scientific scrutiny.

16.
J Pharm Biomed Anal ; 224: 115200, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563593

RESUMO

Xylopic acid (XA) is a bioactive diterpene kaurene isolate of the Guinea pepper fruit, Xylopia aethiopica (Annonaceae) with numerous well-established biological effects. In this study, we aimed to fill certain scientific voids in terms of the scientific literature on XA, specifically, its pharmacokinetic (PK) parameters and in vitro liver microsomal enzyme metabolism. A new LC-MS/MS method was developed and validated for the determination of the plasma concentration-time profile of XA. The method was found to be accurate, precise, selective and repeatable with lowest limit of quantification (LLOQ) of 10 ng/mL and run time of 15 min. The maximum plasma concentration (Cmax), time at which maximum plasma concentration was attained (Tmax), half-life (t1/2), clearance (CL) and mean residence time (MRT) of XA were 167.03 ± 6.18 ng/mL; 10 h; 13.03 ± 7.33 h; 0.04 ± 0.01 mL/h/kg and 23.83 ± 11.02 h respectively. Six metabolites (M1-M6) were tentatively identified after XA was subjected to in vitro liver microsomal enzyme metabolism. The metabolites were the products of methylation (M1), glucuronidation (M2), deacetylation (M3), glucosylation (M4), hydroxylation and glutamic acid addition (M5) and glutathionylation (M6). The outcome of this study provides useful insights that could guide further research on XA.


Assuntos
Diterpenos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fígado , Microssomos Hepáticos
17.
Front Cardiovasc Med ; 10: 1197451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745128

RESUMO

Background: Results from randomized controlled trials (RCTs) and meta-analyses comparing invasive and conservative strategies in patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) are highly debatable. We systematically evaluate the efficacy of invasive and conservative strategies in NSTE-ACS based on time-varied outcomes. Methods: The RCTs for the invasive versus conservative strategies were identified by searching PubMed, Cochrane Central Register of Controlled Trials, Embase, and ClinicalTrials.gov. Trial data for studies with a minimum follow-up time of 30 days were included. We categorized the follow-up time into six varied periods, namely, ≤6 months, 1 year, 2 years, 3 years, 5 years, and ≥10 years. The time-varied outcomes were major adverse cardiovascular event (MACE), death, myocardial infarction (MI), rehospitalization, cardiovascular death, bleeding, in-hospital death, and in-hospital bleeding. Risk ratios (RRs) and 95% confidence intervals (Cis) were calculated. The random effects model was used. Results: This meta-analysis included 30 articles of 17 RCTs involving 12,331 participants. We found that the invasive strategy did not provide appreciable benefits for NSTE-ACS in terms of MACE, death, and cardiovascular death at all time points compared with the conservative strategy. Although the risk of MI was reduced within 6 months (RR 0.80, 95% CI 0.68-0.94) for the invasive strategy, no significant differences were observed in other periods. The invasive strategy reduced the rehospitalization rate within 6 months (RR 0.69, 95% CI 0.52-0.90), 1 year (RR 0.73, 95% CI 0.63-0.86), and 2 years (RR 0.77, 95% CI 0.60-1.00). Of note, an increased risk of bleeding (RR 1.80, 95% CI 1.28-2.54) and in-hospital bleeding (RR 2.17, 95% CI 1.52-3.10) was observed for the invasive strategy within 6 months. In subgroups stratified by high-risk features, the invasive strategy decreased MACE for patients aged ≥65 years within 6 months (RR 0.68, 95% CI 0.58-0.78) and 1 year (RR 0.75, 95% CI 0.62-0.91) and showed benefits for men within 6 months (RR 0.71, 95% CI 0.55-0.92). In other subgroups stratified according to diabetes, ST-segment deviation, and troponin levels, no significant differences were observed between the two strategies. Conclusions: An invasive strategy is superior to a conservative strategy in reducing early events for MI and rehospitalizations, but the invasive strategy did not improve the prognosis in long-term outcomes for patients with NSTE-ACS. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021289579, identifier PROSPERO 2021 CRD42021289579.

18.
J Fungi (Basel) ; 10(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276022

RESUMO

Ganoderma is a genus of biomedical fungus that is used in the development of numerous health products throughout the world. The Lower Volta River Basin of Ghana is an undulating land surface covered by extensive vegetation and water bodies and is rich in polypore mushrooms resembling various members of the Ganoderma genus. Despite the extensive biopharmaceutical benefits of Ganoderma spp., the isolates from the Lower Volta River Basin have not been properly characterized, thus limiting their use in the development of biotechnological products. In this study, Ganoderma spp. collected from the Lower Volta River Basin were genetically analyzed using the nuclear ribosomal sequences, the internal transcribed spacer 2 (ITS 2), the complete internal transcribed spacer (ITS), and the nuclear large subunit (nLSU). Blastn search and sequence analysis revealed that the sample we coded as Ganoderma LVRB-2 belongs to G. mbrekobenum, whereas Ganoderma LVRB-1, Ganoderma LVRB-14, and Ganoderma LVRB-16 belong to the species G. enigmaticum. Our analysis further demonstrates that Ganoderma LVRB-17 belongs to the species G. resinaceum. Thus, the five samples collected in the present study were positioned in three different distinct groups, namely G. mbrekobenum, G. enigmaticum, and G. resinaceum. The current data may serve as reference points for future studies.

19.
Front Biosci (Landmark Ed) ; 27(6): 181, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35748257

RESUMO

BACKGROUND: Avascular necrosis of the femoral head (AVNFH) is a progressive, multifactorial, and challenging clinical disease that causes hip pain and loss of hip joint function. Till now, the pathogenesis of AVNFH was not fully understood. In this study, we characterized cartilage protein profiles of patients with AVNFH and identified the potential proteins involved in the progress of AVNFH using proteomics technique. METHODS: Proteins from the cartilage of 6 patients (3 AVNFH patients and 3 fracture patients) were extracted and identified using label-free proteomics. AVNFH-responsive proteins were compared with those of the fracture patients and duly identified. Bioinformatics analyses including gene ontology (GO), KEGG, and STRING were performed to identify the functions of AVNFH-responsive proteins. RESULTS: A total of 1512 proteins were identified from cartilage tissues of the patients. Compared to fracture patients, 255 significantly changed proteins were identified in cartilage tissues of patients with AVNFH. Functional categorization indicated that the significantly changed proteins were mainly involved in ECM-receptor interaction, focal adhesion, and glycolysis pathways. Interestingly, adipocyte enhancer-binding protein 1, cytoskeleton-associated protein 4, and ASPN protein were dramatically decreased, however, anti leukoproteinase, erythrocyte membrane protein, and lysozyme c were highly increased in patients with AVNFH. CONCLUSIONS: The current proteomic results suggest that ECM-receptor interaction and focal adhesion related proteins contribute to development of AVNFH. To our knowledge, this is firstly reported proteomic study on cartilage tissues of patients with AVNFH. The marker proteins including caveolae-associated protein 3 and procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 could help us to understand the pathogenesis of AVNFH.


Assuntos
Cartilagem Articular , Necrose da Cabeça do Fêmur , Biomarcadores , Necrose da Cabeça do Fêmur/etiologia , Ontologia Genética , Humanos , Proteômica
20.
Pharmacy (Basel) ; 10(6)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36412825

RESUMO

This study had two main thematic aims: first, to determine the factors that influenced the choice of international students at China Pharmaceutical University (CPU) to consider China as a study destination; second, to determine the career preferences of international students upon completion of their various programs of study. As a cross-sectional study, relevant data were collected from undergraduate pharmacy students and postgraduates using a self-administered questionnaire. On the whole, the five most important pull factors that influenced the choice of China as the study destination for the respondents were: (1) quality of education, (2) quality of academic staff, (3) security, (4) desire to obtain a certificate from a foreign country and (5) availability of scholarship opportunities. With respect to the career choices, the top three career preferences of the international students were: (1) to work in the pharmaceutical industry (i.e., pharmaceutical manufacturing companies), (2) to practice clinical pharmacy and (3) to seek employment opportunities outside their countries. This study provides additional details on why China has gradually become a study destination of choice for international students. The career preferences of students could be useful in the design of academic programs that could meet their job aspirations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA