Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770690

RESUMO

Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant (IFR) system composed of red phosphorus (RP), zinc borate (ZB), and a terpolymer of ethylene, butyl acrylate, and maleic anhydride (EBM) was used to prepare EVA (ethylene-vinyl acetate) and EVA/LLDPE (linear low-density polyethylene) composites; their mechanical and flammability properties were systematically investigated. The limiting oxygen index (LOI) of the EVA/LLDPE (as base material) composite containing RP and ZB mixed with nonhalogenated flame retardant, mainly magnesium hydroxide (MH) and coadditives, including processing aids and thermal stabilizers, was established. RP was found to have little effect on the tensile properties of EVA/LLDPE 118W/120 phr flame-retardant (MH + RP) composites. There was a minute difference in the effective trend of RP between tensile strength and elongation at break. Following the addition of ZB, the elongation at break of the composites gradually decreased with increasing RP content and then leveled off when the RP content was over 10 phr. Mechanical properties (elongation at break and tensile strength) can be best maintained at below 10 phr content of RP. The mechanical properties decreased with lower amounts of EBM content. In addition, flame retardancy increased when the EBM content decreased. The findings further revealed that MH and RP have poor compatibility, yielding poor mechanical properties. The LOI greatly increased with RP content, even though the total content of flame retardants (main + intumescent flame retardant) was the same in all formulations. Only over 5 phr RP content formulations passed V-0 of the UL-94 test. When under 5 phr, the RP content formulations did not pass V-0 of the UL-94 test.

2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293467

RESUMO

Poly (ethylene-co-vinyl acetate) (PEVAc) is a copolymer endowed with high elasticity and resilient properties, potentially utilized in various applications. However, the tensile strength of this copolymer is insufficient for use in certain applications that require enough strength to tolerate high external tension or stress. In this study, dolomite was proposed as a nanofiller to reinforce the PEVAc. Raw dolomite was physically and chemically modified in order to improve its mix ability and interfacial adhesion between the PEVAc and dolomite. Initially, the size of dolomite was reduced by combining the ball-milling and tip-sonication methods. SEM, TEM, and XRD were used to characterize the morphology/structure of the raw dolomite and the size-reduced dolomite. Then, a particle size analysis was performed to confirm the average particle size. Our results show that the particle size of dolomite was reduced from 150 µm to 441.4 nm by the physical modification process (size reduction). Based on the TEM analysis, the Feret diameter (df) of the dolomite particles was also reduced from ~112.78 µm to ~139.58 nm only. This physically modified dolomite is referred as dolomite nanoparticles (DNPs), since one or more of its dimensions is less than 100 nm (e.g., thickness and width). To further improve the dolomite and PEVAc matrix interactions, chemical modification of the DNPs were performed by treating the DNPs with stearic acid, forming non-polar dolomite nanoparticles (NP-DNPs). The presence of stearic acid in dolomite was confirmed through FTIR and contact angle analyses. A PEVAc nanocomposite film with NP-NPDs as a nanofiller appeared more homogeneous and exhibited the highest increment in tensile strength and elongation at break. These findings indicated that the combination of ball milling and tip sonication is an efficient method for producing very fine dolomite particles up to the nano-size range, whereas chemical surface modifications improved the compatibility between the dolomite and the copolymer. The combination of these physical and chemical modifications helped to develop a homogeneous copolymer nanocomposite system with improved tensile properties.


Assuntos
Nanocompostos , Nanopartículas , Nanocompostos/química , Polímeros/química , Nanopartículas/química , Etilenos
3.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337306

RESUMO

Due to high filler loading, clean, commercial, thermoplastic, flame-retardant materials are mechanically unstable when insulating wires and cables. In this study, composite formulations of linear low-density polyethylene (LLDPE)/ethylene-vinyl acetate (EVA) containing a flame retardant, such as magnesium hydroxide (MH; formula: Mg(OH)2) and huntite hydromagnesite (HH; formula: Mg3Ca(CO3)4, Mg5(CO3)4(OH)2·3H2O), were prepared. The influence of carbon nanotubes (CNTs) and carbon black (CB) on the mechanical properties and flame retardancy of LLDPE/EVA was studied. Three types of CNTs were examined for their compatibility with other materials in clean thermoplastic flame-retardant compositions. The CNTs had the following diameters: 10-15 nm, 40-60 nm, and 60-80 nm. Optimum mechanical flame retardancy and electrical properties were achieved by adding CNTs with an outer diameter of 40-60 nm and a length of fewer than 20 nm. Large-sized CNTs result in poor mechanical characteristics, while smaller-sized CNTs improve the mechanical properties of the composites. CB enhances flame retardancy but deteriorates mechanical properties, particularly elongation at break, in clean, black, thermoplastic, flame-retardant compositions. Obtaining satisfactory compositions that meet both properties, especially formulations passing the V-0 of the UL 94 test with a minimum tensile strength of 9.5 MPa and an elongation at break of 125%, is challenging. When LLDPE was partially substituted with EVA, the limiting oxygen index (LOI) increased. The amount of filler in the formulations determined how it affected flammability. This study also included a reliable method for producing clean, black, thermoplastic, flame-retardant insulating material for wire and cable without sacrificing mechanical properties.

4.
Discov Nano ; 18(1): 12, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779998

RESUMO

In this review, the radiolytic and physical methods that can be used for the functionalization of carbon nanotubes (CNTs) and their applications as a support for fuel cell electrodes are described. Alloy nanoparticles have also been examined. For example, Pt-Ru nanoparticles were deposited onto a functionalized multiwalled carbon nanotube (MWNT) composite by reducing metal ions (e.g., Pt4+ and Ru3+) here using γ-irradiation and, hence, creating Pt-Ru/MWNT catalysts. The morphology, size, and composition of these Pt-Ru/MWNT catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis, respectively. The efficiency of the Pt-Ru/MWNT catalyst was examined for use in the oxidation of carbon monoxide (CO) and methanol. The results of stripping voltammetry for the adsorbed CO on the Pt-Ru/MWNT catalyst electrodes indicated that CO oxidation was energetically favorable at these electrodes. Thus, Pt-Ru/MWNT catalysts were found to be suitable for electrode assembly in direct methanol fuel cells.

5.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297076

RESUMO

Electrophotographic printing and copying processes primarily use toner, which is a mixture of colorant, polymer, and additives. Toner can be made using traditional mechanical milling techniques or more contemporary chemical polymerization techniques. Suspension polymerization provides spherical particles with less stabilizer adsorption, homogeneous monomers, higher purity, and easier control of the reaction temperature. In contrast to these advantages, however, the particle size resulting from suspension polymerization is too large for toner. To overcome this disadvantage, devices such as high-speed stirrers and homogenizers can be used to reduce the size of the droplets. This research investigated the use of carbon nanotubes (CNTs) instead of carbon black as the pigment in toner development. We succeeded in achieving a good dispersion of four different types of CNT, specifically modified with NH2 and Boron or unmodified with long or short chains in water rather than chloroform, using sodium n-dodecyl sulfate as a stabilizer. We then performed polymerization of the monomers styrene and butyl acrylate in the presence of the different CNT types and found that the best monomer conversion and largest particles (in the micron range) occurred with CNTs modified with boron. The insertion of a charge control agent into the polymerized particles was achieved. Monomer conversion of over 90% was realized with all concentrations of MEP-51, whereas conversion was under 70% with all concentrations of MEC-88. Furthermore, analysis with dynamic light scattering and scanning electron microscopy (SEM) indicated that all polymerized particles were in the micron size range, suggesting that our newly developed toner particles were less harmful and environmentally friendly products than those typically and commercially available. The SEM micrographs clearly showed good dispersion and attachment of the CNTs on the polymerized particles (no CNT aggregation was found), which has never been published before.

6.
Polymers (Basel) ; 13(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206963

RESUMO

The purpose of this study was to assess the ability of titanium Ti(IV) alkyloxy compounds supported by organic polymer polyvinyl chloride (PVC) to polymerize ethylene by feeding triethylaluminium (TEA) as a cocatalyst. Additionally, the impacts of the molar ratio of [Al]/[Ti] on the catalytic activities in ethylene's polymerization and of the comonomer through utilization of diverse quantities of comonomers on a similar or identical activity were studied. The optimal molar ratio of [Al]/[Ti] was 773:1, and the prepared catalyst had an initial activity of up to 2.3 kg PE/mol Ti. h. when the copolymer was incorporated with 64 mmol of 1-octene. The average molecular weight (Mw) of the copolymer produced with the catalysts was between 97 kg/mol and 326 kg/mol. A significant decrease in the Mw was observed, and PDI broadened with increasing concentration of 1-hexene because of the comonomer's stronger chain transfer capacity. The quick deactivation of titanium butoxide Ti(OBu)4 on the polymers was found to be associated with increasing oxidation when supported by the catalyst. The presence of Ti(III) after reduction with the aluminum alkyls cleaves the carbon-chlorine bonds of the polymer, producing an inactive polymeric Ti(IV) complex. The results show that synergistic effects play an important role in enhancing the observed rate of reaction, as illustrated by evidence from scanning electron microscopy (SEM). The diffusion of cocatalysts within catalytic precursor particles may also explain the progression of cobweb structures in the polymer particles.

7.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466885

RESUMO

Our goal is to develop a structural ceramic for high-temperature applications in which silicon carbide-based materials (SiCs) are used as matrix composites. The potential of SiCs to deposit a mixture of SiC and zirconium diboride (ZrB2) plasma spray coating is analyzed. To deposit thermal barrier layers containing up to 50 vol.% SiC, a high-pressure plasma spray (HPPS) process was used. Although the SiC cannot be deposited by thermal spray, a mixture of SiC and zirconium diboride (ZrB2) was deposited because these two compounds form a eutectic phase at a temperature below SiC decomposition. The preference was two different forms, 3 mm and 1 mm, of graphite substrates with different thickness values. A comparison of the morphology of SiC-ZrB2 coatings before and after thermal treatment was performed by applying heat to the surface of a gas torch and traditional furnace between 800 °C and 1200 °C. The growth of the oxide scale was calculated with X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and density. The oxide scale consists of a SiO2 layer with ZrO2 groups. The findings indicate a greater potential for the studied material in protecting against high-temperature oxidation and in a wide variety of aerospace applications.

8.
Polymers (Basel) ; 13(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577982

RESUMO

Recently developed polymer-based composites could prove useful in many applications such as in radiation shielding. In this work, the potential of a bismuth oxide (Bi2O3) nanofiller based on an LDPE polymer was developed as lead-free X-ray radiation shielding offering the benefits of lightness, low-cost and non-toxic compared to pure lead. Three different LDPE-based composites were prepared with varying weight percentages of Bi2O3: 5%, 10% and 15%. The characterizations were extended to include structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared nanocomposites. The results revealed that the incorporation of the Bi2O3 nanofiller into an LDPE improved the density of the composites. There was also a slight increase in the tensile strength and tensile modulus. In addition, there was a clear improvement in the efficiency of the shield when fillers were added to the LDPE polymer. The LDPE + Bi2O3 (15%) composite needed the lowest thickness to attenuate 50% of the incident X-rays. The LDPE + Bi2O3 (15%) polymer can also block around 80% of X-rays at 47.9 keV. In real practice, a thicker shield of the proposed composite materials, or a higher percentage of the filler could be employed to safely ensure the radiation is blocked.

9.
Polymers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451135

RESUMO

Polyaniline (PANI) was chemically doped and functionalized with single walled carbon nanotubes (SWCNTs). Various characterization methods were employed to study the structure and optical properties of PANI/SWCNTs nanocomposite, such as Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical absorption, and stationary photoluminescence. Additionally, a theoretical study using density functional theory calculations was also carried out. It has been demonstrated that the doping process may reduce the band gap without affecting the molecular structure, leading to a better compatibility with the solar spectrum. Moreover, the functionalization process with SWCNTs was able to significantly improve the properties of the resulting nanocomposite. The final interpenetrating network of PANI/SWCNTs exhibited an optical gap of nearly 2.28 eV, from which localized states induced by the charge transfer were created at nearly 1.70 eV. In addition, the resulting donor-acceptor network leads to a separation of electron holes pairs rather than their recombination, which can be used as an active layer in photovoltaic applications and a photocatalyst for advanced oxidation processes.

10.
Polymers (Basel) ; 13(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960896

RESUMO

Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application.

11.
Polymers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917177

RESUMO

The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.

12.
Materials (Basel) ; 13(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143408

RESUMO

Because of the increased demand for preceramic polymers in high-tech applications, there has been growing interest in the synthesis of preceramic polymers, including polysiloxanes and alumina. These polymers are preferred because of their low thermal expansion, conformability to surfaces over large areas, and flexibility. The primary objective was to evaluate the aspects of polymer-derived ceramic routs, focusing on the UV lithography process of preceramic polymers and the pyrolyzing properties of the final ceramics. We found that the p(DMS-co-AMS) copolymer was effective in scattering the hydrophilic Al2O3 nanoparticles into the exceedingly hydrophobic solvent. The physico-chemical behavior of characterized copolymers was explored during their pyrolytic transformation into amorphous silicon-based ceramics. The results indicate that an increase of the pyrolysis temperature degraded the Si-O network through the carbothermic reaction of silicon. We also found a rapid elimination of copolymer pores and densification when the temperature increased (1100 to 1200 °C). At different but specific temperature ranges, there are different distinct rearrangement reactions in the conversion of polymer to ceramic; reductions of the melting point (Tm) of the total heat of melting (ΔHm) of the pyrolysis process resulted in the crystallization of ceramic materials; hence, lithography based on pyrolysis properties of preceramic polymers is a critical method in the conversation of polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA