Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
Mol Pharm ; 16(10): 4292-4301, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31503493

RESUMO

2-(Phosphonomethyl)-pentanedioic acid (2-PMPA) is a potent (IC50 = 300 pM) and selective inhibitor of glutamate carboxypeptidase II (GCPII) with efficacy in multiple neurological and psychiatric disease preclinical models and more recently in models of inflammatory bowel disease (IBD) and cancer. 2-PMPA (1), however, has not been clinically developed due to its poor oral bioavailability (<1%) imparted by its four acidic functionalities (c Log P = -1.14). In an attempt to improve the oral bioavailability of 2-PMPA, we explored a prodrug approach using (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL), an FDA-approved promoiety, and systematically masked two (2), three (3), or all four (4) of its acidic groups. The prodrugs were evaluated for in vitro stability and in vivo pharmacokinetics in mice and dog. Prodrugs 2, 3, and 4 were found to be moderately stable at pH 7.4 in phosphate-buffered saline (57, 63, and 54% remaining at 1 h, respectively), but rapidly hydrolyzed in plasma and liver microsomes, across species. In vivo, in a single time-point screening study in mice, 10 mg/kg 2-PMPA equivalent doses of 2, 3, and 4 delivered significantly higher 2-PMPA plasma concentrations (3.65 ± 0.37, 3.56 ± 0.46, and 17.3 ± 5.03 nmol/mL, respectively) versus 2-PMPA (0.25 ± 0.02 nmol/mL). Given that prodrug 4 delivered the highest 2-PMPA levels, we next evaluated it in an extended time-course pharmacokinetic study in mice. 4 demonstrated an 80-fold enhancement in exposure versus oral 2-PMPA (AUC0-t: 52.1 ± 5.9 versus 0.65 ± 0.13 h*nmol/mL) with a calculated absolute oral bioavailability of 50%. In mouse brain, 4 showed similar exposures to that achieved with the IV route (1.2 ± 0.2 versus 1.6 ± 0.2 h*nmol/g). Further, in dogs, relative to orally administered 2-PMPA, 4 delivered a 44-fold enhanced 2-PMPA plasma exposure (AUC0-t for 4: 62.6 h*nmol/mL versus AUC0-t for 2-PMPA: 1.44 h*nmol/mL). These results suggest that ODOL promoieties can serve as a promising strategy for enhancing the oral bioavailability of multiply charged compounds, such as 2-PMPA, and enable its clinical translation.


Assuntos
Microssomos Hepáticos/metabolismo , Compostos Organofosforados/metabolismo , Pró-Fármacos/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Cães , Masculino , Camundongos , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Distribuição Tecidual
3.
Proc Natl Acad Sci U S A ; 113(36): E5328-36, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27559084

RESUMO

Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer.


Assuntos
Metformina/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Sulfetos/administração & dosagem , Tiadiazóis/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Benzenoacetamidas/uso terapêutico , Linhagem Celular Tumoral , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Humanos , Camundongos , Nanopartículas/química , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Sulfetos/química , Tiadiazóis/química , Tiadiazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Pharm ; 14(10): 3248-3257, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28763226

RESUMO

2-(Phosphonomethyl)pentanedioic acid (2-PMPA) is a potent and selective inhibitor of glutamate carboxypeptidase-II (GCPII) with efficacy in multiple neurological and psychiatric disease models, but its clinical utility is hampered by low brain penetration due to the inclusion of multiple acidic functionalities. We recently reported an improvement in the brain-to-plasma ratio of 2-PMPA after intranasal (IN) dosing in both rodents and primates. Herein, we describe the synthesis of several 2-PMPA prodrugs with further improved brain delivery of 2-PMPA after IN administration by masking of the γ-carboxylate. When compared to IN 2-PMPA in rats at 1 h post dose, γ-(4-acetoxybenzyl)-2-PMPA (compound 1) resulted in significantly higher 2-PMPA delivery to both plasma (4.1-fold) and brain (11-fold). Subsequent time-dependent evaluation of 1 also showed high brain as well as plasma 2-PMPA exposures with brain-to-plasma ratios of 2.2, 0.48, and 0.26 for olfactory bulb, cortex, and cerebellum, respectively, as well as an improved sciatic nerve to plasma ratio of 0.84. In contrast, IV administration of compound 1 resulted in similar plasma exposure of 2-PMPA versus the IN route (AUCIV: 76 ± 9 h·nmol/mL versus AUCIN: 99 ± 24 h·nmol/mL); but significantly lower nerve and brain tissue exposures with tissue-to-plasma ratios of 0.21, 0.03, 0.04, and 0.04 in nerve, olfactory bulb, cortex, and cerebellum, respectively. In primates, IN administration of 1 more than doubled 2-PMPA concentrations in the cerebrospinal fluid relative to previously reported levels following IN 2-PMPA. The results of these experiments provide a promising strategy for testing GCPII inhibition in neurological and psychiatric disorders.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Compostos Organofosforados/farmacologia , Administração Intranasal , Administração Intravenosa , Animais , Líquido Cefalorraquidiano/efeitos dos fármacos , Ésteres/análise , Ésteres/química , Ésteres/farmacologia , Macaca mulatta , Masculino , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/química , Compostos Organofosforados/análise , Compostos Organofosforados/química , Pró-Fármacos/análise , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ratos , Ratos Wistar , Distribuição Tecidual
5.
Angiogenesis ; 19(4): 487-500, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387982

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.


Assuntos
Proteínas Angiogênicas/metabolismo , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Laminina/metabolismo , Antígenos de Superfície/genética , Adesão Celular , Dipeptídeos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glutamato Carboxipeptidase II/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrólise , Integrina beta1/metabolismo , Masculino , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neovascularização Fisiológica , Fragmentos de Peptídeos/metabolismo , Proteólise , Especificidade por Substrato
6.
Bioorg Med Chem Lett ; 26(8): 2088-91, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26965861

RESUMO

A series of 3-substituted 5-hydroxy-1,2,4-triazin-6(1H)-one derivatives were designed and synthesized as a new class of d-amino acid oxidase (DAAO) inhibitors. Some of the newly synthesized derivatives showed potent inhibitory activity against human DAAO with IC50 values in the nanomolar range. Among them, 6-hydroxy-3-phenethyl-1,2,4-triazin-5(2H)-one 6b and 3-((6-fluoronaphthalen-2-yl)methylthio)-6-hydroxy-1,2,4-triazin-5(2H)-one 6m were found to be metabolically stable in mouse liver microsomes. In addition, compound 6b was found to be orally available in mice and able to enhance plasma d-serine levels following its co-administration with d-serine compared to the oral administration of d-serine alone.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Triazinas/farmacologia , Animais , D-Aminoácido Oxidase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Serina/sangue , Relação Estrutura-Atividade , Triazinas/química , Triazinas/metabolismo
7.
J Neurovirol ; 21(2): 159-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645378

RESUMO

Recovery from encephalomyelitis induced by infection with mosquito-borne alphaviruses is associated with a high risk of lifelong debilitating neurological deficits. Infection of mice with the prototypic alphavirus, Sindbis virus, provides an animal model with which to study disease mechanisms and examine potential therapeutics. Infectious virus is cleared from the brain within a week after infection, but viral RNA is cleared slowly and persists for the life of the animal. However, no studies have examined the effect of infection on neurocognitive function over time. In the present study, we examined neurocognitive function at different phases of infection in 5-week-old C57BL/6 mice intranasally inoculated with Sindbis virus. At the peak of active virus infection, mice demonstrated hyperactivity, decreased anxiety, and marked hippocampal-dependent memory deficits, the latter of which persisted beyond clearance of infectious virus and resolution of clinical signs of disease. Previous studies indicate that neuronal damage during alphavirus encephalomyelitis is primarily due to inflammatory cell infiltration and glutamate excitotoxicity rather than directly by virus infection. Therefore, mice were treated with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist that can suppress both the immune response and excitotoxicity. Treatment with DON decreased inflammatory cell infiltration and cell death in the hippocampus and partially prevented development of clinical signs and neurocognitive impairment despite the presence of infectious virus and high viral RNA levels. This study presents the first report of neurocognitive sequelae in mice with alphavirus encephalomyelitis and provides a model system for further elucidation of the pathogenesis of virus infection and assessment of potential therapies.


Assuntos
Infecções por Alphavirus/complicações , Antimetabólitos Antineoplásicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Encefalite Viral/complicações , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glutamina/antagonistas & inibidores , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Sindbis virus
8.
Anal Biochem ; 474: 28-34, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25584882

RESUMO

Glutamine is an abundant amino acid that plays pivotal roles in cell growth, cell metabolism, and neurotransmission. Dysregulation of glutamine-using pathways has been associated with pathological conditions such as cancer and neurodegenerative diseases. 6-Diazo-5-oxo-l-norleucine (DON) is a reactive glutamine analog that inhibits enzymes affecting glutamine metabolism such as glutaminase, 2-N-amidotransferase, l-asparaginase, and several enzymes involved in pyrimidine and purine de novo synthesis. As a result, DON is actively used in preclinical models of cancer and neurodegenerative disease. Moreover, there have been several clinical trials using DON to treat a variety of cancers. Considerations of dose and exposure are especially important with DON treatment due to its narrow therapeutic window and significant side effects. Consequently, a robust quantification bioassay is of interest. DON is a polar unstable molecule that has made quantification challenging. Here we report on the characterization of a bioanalytical method to quantify DON in tissue samples involving DON derivatization with 3 N HCl in butanol. The derivatized product is lipophilic and stable. Detection of this analyte by mass spectrometry is fast and specific and can be used to quantify DON in plasma and brain tissue with a limit of detection at the low nanomolar level.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Diazo-Oxo-Norleucina/sangue , Espectrometria de Massas em Tandem/métodos , 1-Butanol/química , Animais , Cloro/química , Ésteres/química , Masculino , Camundongos Endogâmicos C57BL , Padrões de Referência , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 109(49): 20101-6, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169655

RESUMO

Half of all patients with multiple sclerosis (MS) experience cognitive impairment, for which there is no pharmacological treatment. Using magnetic resonance spectroscopy (MRS), we examined metabolic changes in the hippocampi of MS patients, compared the findings to performance on a neurocognitive test battery, and found that N-acetylaspartylglutamate (NAAG) concentration correlated with cognitive functioning. Specifically, MS patients with cognitive impairment had low hippocampal NAAG levels, whereas those with normal cognition demonstrated higher levels. We then evaluated glutamate carboxypeptidase II (GCPII) inhibitors, known to increase brain NAAG levels, on cognition in the experimental autoimmune encephalomyelitis (EAE) model of MS. Whereas GCPII inhibitor administration did not affect physical disabilities, it increased brain NAAG levels and dramatically improved learning and memory test performance compared with vehicle-treated EAE mice. These data suggest that NAAG is a unique biomarker for cognitive function in MS and that inhibition of GCPII might be a unique therapeutic strategy for recovery of cognitive function.


Assuntos
Disfunção Cognitiva/enzimologia , Encefalomielite Autoimune Experimental/complicações , Glutamato Carboxipeptidase II/antagonistas & inibidores , Hipocampo/metabolismo , Esclerose Múltipla/complicações , Adulto , Análise de Variância , Animais , Disfunção Cognitiva/etiologia , Dipeptídeos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Compostos Organofosforados
10.
FASEB J ; 27(7): 2620-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23525278

RESUMO

Glutamate carboxypeptidase II (GCPII) is an exopeptidase that catalyzes the hydrolysis of N-acetylated aspartate-glutamate (NAAG) to N-acetyl aspartate (NAA) and glutamate. Consequently, GCPII inhibition has been of interest for the treatment of central and peripheral nervous system diseases associated with excess glutamate. Recently, it was reported that GCPII can also serve as an endopeptidase cleaving amyloid ß (Aß) peptides and that its inhibition could increase the risk of Alzheimer's disease by increasing brain Aß levels. This study aimed to corroborate and extend these new findings. We incubated Aß peptides (20 µM) with human recombinant GCPII (300 ng/ml) and monitored the appearance of degradation products by mass spectrometry. Aß peptides remained intact after 18 h incubation with GCPII. Under the same experimental conditions, Aß1-40 (20 µM) was incubated with neprilysin (300 ng/ml), an endopeptidase known to hydrolyze Aß1-40 and the expected cleavage products were observed. GCPII was confirmed active by catalyzing the complete hydrolysis of NAAG (100 µM). We also studied the hydrolysis of [(3)H]-NAAG (30 nM) catalyzed by GCPII (40 pM) in the presence of Aß peptides (picomolar to micromolar range). The addition of Aß peptides did not alter [(3)H]-NAAG hydrolysis. We conclude that GCPII is not an amyloid peptide-degrading enzyme.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/genética , Biocatálise , Dipeptídeos/metabolismo , Glutamato Carboxipeptidase II/genética , Humanos , Hidrólise , Espectrometria de Massas/métodos , Neprilisina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise , Proteínas Recombinantes/metabolismo , Trítio
11.
Bioorg Med Chem ; 22(21): 5831-7, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288495

RESUMO

A series of Arg-Phe-NH2 peptidomimetics containing an Arg mimetic were synthesized and tested as agonists of human MrgX1, rat MrgC, and mouse MrgC11 receptors. As predicted from the previously established species specificity, these peptidomimetics were found to be devoid of MrgX1 agonist activity. In contrast, these compounds acted as agonists of MrgC and/or MrgC11 with varying degrees of potency. These new peptidomimetics should complement the existing small molecule human MrgX1 agonists and enhance our ability to assess the therapeutic utility of targeting Mrg receptors in rodent models.


Assuntos
Neuropeptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Animais , Células HEK293 , Humanos , Camundongos , Neuropeptídeos/síntese química , Neuropeptídeos/metabolismo , Peptidomiméticos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção
12.
Cancer Immunol Res ; 12(7): 854-875, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701369

RESUMO

Glutamine metabolism in tumor microenvironments critically regulates antitumor immunity. Using the glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes. We show JHU083-mediated glutamine antagonism in tumor microenvironments induced by TNF, proinflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibited increased tumor cell phagocytosis and diminished proangiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken tricarboxylic acid (TCA) cycle, and purine metabolism disruption. Although the antitumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased the abundance of regulatory T cells. Finally, JHU083 caused a global shutdown in glutamine-utilizing metabolic pathways in tumor cells, leading to reduced HIF-1α, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key antitumor features. Altogether, our findings demonstrate that targeting glutamine with JHU083 led to suppressed tumor growth as well as reprogramming of immunosuppressive TAMs within prostate and bladder tumors that promoted antitumor immune responses. JHU083 can offer an effective therapeutic benefit for tumor types that are enriched in immunosuppressive TAMs.


Assuntos
Glutamina , Neoplasias da Próstata , Microambiente Tumoral , Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Glutamina/metabolismo , Masculino , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Camundongos , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
13.
Bioorg Med Chem Lett ; 23(13): 3910-3, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23683589

RESUMO

A series of kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) derivatives were synthesized and tested for their ability to inhibit D-amino acid oxidase (DAAO). Various substituents were incorporated into kojic acid at its 2-hydroxymethyl group. These analogs serve as useful molecular probes to explore the secondary binding site, which can be exploited in designing more potent DAAO inhibitors.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sondas Moleculares/farmacologia , Pironas/farmacologia , Sítios de Ligação/efeitos dos fármacos , D-Aminoácido Oxidase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Pironas/síntese química , Pironas/química , Relação Estrutura-Atividade
14.
Clin Cancer Res ; 29(20): 4209-4218, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37494541

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common brain malignancy with median survival <2 years. Standard-of-care temozolomide has marginal efficacy in approximately 70% of patients due to MGMT expression. LP-184 is an acylfulvene-derived prodrug activated by the oxidoreductase PTGR1 that alkylates at N3-adenine, not reported to be repaired by MGMT. This article examines LP-184 efficacy against preclinical GBM models and identifies molecular predictors of LP-184 efficacy in clinical GBM. EXPERIMENTAL DESIGN: LP-184 effects on GBM cell viability and DNA damage were determined using cell lines, primary PDX-derived cells and patient-derived neurospheres. GBM cell sensitivities to LP-184 relative to temozolomide and MGMT expression were examined. Pharmacokinetics and CNS bioavailability were evaluated in mice with GBM xenografts. LP-184 effects on GBM xenograft growth and animal survival were determined. Machine learning, bioinformatic tools, and clinical databases identified molecular predictors of GBM cells and tumors to LP-184 responsiveness. RESULTS: LP-184 inhibited viability of multiple GBM cell isolates including temozolomide-resistant and MGMT-expressing cells at IC50 = approximately 22-310 nmol/L. Pharmacokinetics showed favorable AUCbrain/plasma and AUCtumor/plasma ratios of 0.11 (brain Cmax = 839 nmol/L) and 0.2 (tumor Cmax = 2,530 nmol/L), respectively. LP-184 induced regression of GBM xenografts and prolonged survival of mice bearing orthotopic xenografts. Bioinformatic analyses identified PTGR1 elevation in clinical GBM subtypes and associated LP-184 sensitivity with EGFR signaling, low nucleotide excision repair (NER), and low ERCC3 expression. Spironolactone, which induces ERCC3 degradation, decreased LP-184 IC50 3 to 6 fold and enhanced GBM xenograft antitumor responses. CONCLUSIONS: These results establish LP-184 as a promising chemotherapeutic for GBM with enhanced efficacy in intrinsic or spironolactone-induced TC-NER-deficient tumors.

15.
Sci Transl Med ; 15(708): eabn7491, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556558

RESUMO

There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.


Assuntos
Colite , Glutamato Carboxipeptidase II , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL
16.
Eur J Med Chem ; 259: 115674, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536209

RESUMO

Neutral sphingomyelinase 2 (nSMase2) has gained increasing attention as a therapeutic target to regulate ceramide production in various disease conditions. Phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)-pyrrolidin-3-yl)carbamate (PDDC) is a submicromolar nSMase2 inhibitor and has been widely used to study the pharmacological effects of nSMase2 inhibition. Through screening of compounds containing a bicyclic 5-6 fused ring, larotrectinib containing a pyrazolo[1,5-a]pyrimidine ring was identified as a low micromolar inhibitor of nSMase2. This prompted us to investigate the pyrazolo[1,5-a]pyrimidin-3-amine ring as a novel scaffold to replace the imidazo[1,2-b]pyridazine-8-amine ring of PDDC. A series of molecules containing a pyrazolo[1,5-a]pyrimidin-3-amine ring were synthesized and tested for their ability to inhibit human nSMase2. Several compounds exhibited nSMase2 inhibitory potency superior to that of PDDC. Among these, N,N-dimethyl-5-morpholinopyrazolo[1,5-a]pyrimidin-3-amine (11j) was found to be metabolically stable in liver microsomes and orally available with a favorable brain-to-plasma ratio, demonstrating the potential of pyrazolo[1,5-a]pyrimidine ring as an effective scaffold for nSMase2 inhibition.


Assuntos
Aminas , Esfingomielina Fosfodiesterase , Humanos , Pirimidinas/farmacologia , Ceramidas
17.
J Control Release ; 358: 27-42, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054778

RESUMO

Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype. 2-(3-Mercaptopropyl) pentanedioic acid (2-MPPA) is the first GCPII inhibitor that underwent clinical trials. Unfortunately, immunological toxicities have hindered 2-MPPA clinical translation. Targeted delivery of 2-MPPA specifically to activated microglia and astrocytes that over-express GCPII has the potential to mitigate glutamate excitotoxicity and attenuate neuroinflammation. In this study, we demonstrate that 2-MPPA when conjugated to generation-4, hydroxyl-terminated polyamidoamine (PAMAM) dendrimers (D-2MPPA) localize specifically in activated microglia and astrocytes only in newborn rabbits with cerebral palsy (CP), not in controls. D-2MPPA treatment led to higher 2-MPPA levels in the injured brain regions compared to 2-MPPA treatment, and the extent of D-2MPPA uptake correlated with the injury severity. D-2MPPA was more efficacious than 2-MPPA in decreasing extracellular glutamate level in ex vivo brain slices of CP kits, and in increasing transforming growth factor beta 1 (TGF-ß1) level in primary mixed glial cell cultures. A single systemic intravenous dose of D-2MPPA on postnatal day 1 (PND1) decreased microglial activation and resulted in a change in microglial morphology to a more ramified form along with amelioration of motor deficits by PND5. These results indicate that targeted dendrimer-based delivery specifically to activated microglia and astrocytes can improve the efficacy of 2-MPPA by attenuating glutamate excitotoxicity and microglial activation.


Assuntos
Paralisia Cerebral , Dendrímeros , Animais , Coelhos , Paralisia Cerebral/metabolismo , Dendrímeros/metabolismo , Ácido Glutâmico , Encéfalo/metabolismo , Microglia/metabolismo , Inflamação/tratamento farmacológico
18.
Nat Commun ; 14(1): 7427, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973991

RESUMO

As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Glutamina/farmacologia , Tuberculose/microbiologia , Antibacterianos/farmacologia
19.
J Med Chem ; 66(22): 15493-15510, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37949450

RESUMO

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/química , Diazo-Oxo-Norleucina/farmacocinética , Glutamina , Ésteres/uso terapêutico , Neoplasias/tratamento farmacológico
20.
Mol Cancer Ther ; 22(12): 1390-1403, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616542

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Animais , Camundongos , Glutamina , Linhagem Celular Tumoral , Antimetabólitos/uso terapêutico , Neoplasias de Bainha Neural/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA