Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046040

RESUMO

Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.


Assuntos
Células de Langerhans/metabolismo , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/metabolismo , Receptores CCR4/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Animais , Biomarcadores , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Células de Langerhans/imunologia , Camundongos , Dor Pós-Operatória/diagnóstico , Transdução de Sinais
3.
J Neurosci Res ; 100(1): 251-264, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075613

RESUMO

Opioids are potent analgesics, but their pain-relieving effects diminish with repeated use. The reduction in analgesic potency is a hallmark of opioid analgesic tolerance, which hampers opioid pain therapy. In the central nervous system, opioid analgesia is critically modulated by adenosine, a purine nucleoside implicated in the beneficial and detrimental actions of opioid medications. Here, we focus on the A3 adenosine receptor (A3 AR) in opioid analgesic tolerance. Intrathecal administration of the A3 AR agonist MRS5698 with daily systemic morphine in male rats attenuated the reduction in morphine antinociception over 7 days. In rats with established morphine tolerance, intrathecal MRS5698 partially restored the antinociceptive effects of morphine. However, when MRS5698 was discontinued, these animals displayed a reduced antinociceptive response to morphine. Our results suggest that MRS5698 acutely and transiently potentiates morphine antinociception in tolerant rats. By contrast, in morphine-naïve rats MRS5698 treatment did not impact thermal nociceptive threshold or affect antinociceptive response to a single injection of morphine. Furthermore, we found that morphine-induced adenosine release in cerebrospinal fluid was blunted in tolerant animals, but total spinal A3 AR expression was not affected. Collectively, our findings indicate that spinal A3 AR activation acutely potentiates morphine antinociception in the opioid tolerant state.


Assuntos
Analgésicos Opioides , Morfina , Adenosina/metabolismo , Adenosina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Tolerância a Medicamentos , Injeções Espinhais , Masculino , Morfina/farmacologia , Ratos , Receptores Purinérgicos P1/metabolismo , Medula Espinal/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269644

RESUMO

Transient receptor potential canonical (TRPC) channels are membrane proteins involved in regulating Ca2+ homeostasis, and whose functions are modulated by G protein-coupled receptors (GPCR). In this study, we developed bioluminescent resonance energy transfer (BRET) biosensors to better study channel conformational changes following receptor activation. For this study, two intramolecular biosensors, GFP10-TRPC7-RLucII and RLucII-TRPC7-GFP10, were constructed and were assessed following the activation of various GPCRs. We first transiently expressed receptors and the biosensors in HEK293 cells, and BRET levels were measured following agonist stimulation of GPCRs. The activation of GPCRs that engage Gαq led to a Gαq-dependent BRET response of the functional TRPC7 biosensor. Focusing on the Angiotensin II type-1 receptor (AT1R), GFP10-TRPC7-RLucII was tested in rat neonatal cardiac fibroblasts, expressing endogenous AT1R and TRPC7. We detected similar BRET responses in these cells, thus validating the use of the biosensor in physiological conditions. Taken together, our results suggest that activation of Gαq-coupled receptors induce conformational changes in a novel and functional TRPC7 BRET biosensor.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas Biossensoriais , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Células HEK293 , Humanos , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
5.
J Physiol ; 599(4): 1335-1354, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180962

RESUMO

KEY POINTS: We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma-associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε-transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies' oxygen sensitivity is independent of PKCε-TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen-induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε-TRPV1 pathway, systemic delivery of a PKCε-blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin. ABSTRACT: The autonomic nervous system orchestrates organ-specific, systemic and behavioural responses to inflammation. Recently, we demonstrated a vital role for lysophosphatidic acid in stimulating the primary autonomic oxygen chemoreceptors, the carotid bodies, in parasympathetic-mediated asthmatic airway hyperresponsiveness. However, the cacophony of stimulatory factors and cellular mechanisms of carotid body activation are unknown. Therefore, we set out to determine the intracellular signalling involved in carotid body-mediated sensing of asthmatic blood-borne inflammatory mediators. We employed a range of in vitro and rat in situ preparations, site-directed mutagenesis, patch-clamp, nerve recordings and pharmacological inhibition to assess cellular signalling. We show that the carotid bodies are also sensitive to asthma-associated prototypical Th2 cytokines which elicit sensory nerve excitation. This provides additional asthmatic ligands contributing to the previously established reflex arc resulting in efferent vagal activity and asthmatic bronchoconstriction. This novel sensing role for the carotid body is mediated by a PKCε-dependent stimulation of transient receptor potential vanilloid 1 (TRPV1), likely via TRPV1 phosphorylation at sites T704 and S502. Importantly, carotid body oxygen sensing was unaffected by blocking either PKCε or TRPV1. Further, we demonstrate that systemic PKCε blockade reduces asthmatic respiratory distress in response to allergen and airway hyperresponsiveness. These discoveries support an inflammation-dependent, oxygen-independent function for the carotid body and suggest that targeting PKCε provides a novel therapeutic option to abate allergic airway disease without altering life-saving autonomic hypoxic reflexes.


Assuntos
Asma , Corpo Carotídeo , Animais , Corpo Carotídeo/metabolismo , Fosforilação , Proteína Quinase C-épsilon , Ratos , Canais de Cátion TRPV/metabolismo
6.
Physiol Rev ; 94(1): 81-140, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24382884

RESUMO

The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Dor/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos , Nociceptores/metabolismo , Dor/fisiopatologia
7.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G280-G297, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288735

RESUMO

Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs), contributing to tissue stiffening and luminal narrowing. Human nuclear receptor 4A 1 (NR4A1) was previously reported to regulate mesenchymal cell function and dampen fibrogenic signaling. NR4A1 gene variants are associated with IBD risk, and it has been shown to regulate intestinal inflammation. Here, we tested the hypothesis that NR4A1 acts as a negative regulator of intestinal fibrosis through regulating myofibroblast function. Using the SAMP1/YitFc mouse, we tested whether two pharmacological agents known to enhance NR4A1 signaling, cytosporone B (Csn-B) or 6-mercaptopurine (6-MP), could reduce fibrosis. We also used the dextran sulfate sodium (DSS) model of colitis and assessed the magnitude of colonic fibrosis in mouse nuclear receptor 4A 1 (Nr4a1-/-) and their wild-type littermates (Nr4a1+/+). Lastly, intestinal myofibroblasts isolated from Nr4a1-/- and Nr4a1+/+ mice or primary human intestinal myofibroblasts were stimulated with transforming growth factor-ß1 (TGF-ß1), in the presence or absence of Csn-B or 6-MP, and proliferation and ECM gene expression assessed. Csn-B or 6-MP treatment significantly reduced ileal thickness, collagen, and overall ECM content in SAMP1/YitFc mice. This was associated with a reduction in proliferative markers within the mesenchymal compartment. Nr4a1-/- mice exposed to DSS exhibited increased colonic thickening and ECM content. Nr4a1-/- myofibroblasts displayed enhanced TGF-ß1-induced proliferation. Furthermore, Csn-B or 6-MP treatment was antiproliferative in Nr4a1+/+ but not Nr4a1-/- cells. Lastly, activating NR4A1 in human myofibroblasts reduced TGF-ß1-induced collagen deposition and fibrosis-related gene expression. Our data suggest that NR4A1 can attenuate fibrotic processes in intestinal myofibroblasts and could provide a valuable clinical target to treat inflammation-associated intestinal fibrosis.NEW & NOTEWORTHY Fibrosis and increased muscle thickening contribute to stricture formation and intestinal obstruction, a complication that occurs in 30%-50% of patients with CD within 10 yr of disease onset. More than 50% of those who undergo surgery to remove the obstructed bowel will experience stricture recurrence. To date, there are no drug-based approaches approved to treat intestinal strictures. In the current submission, we identify NR4A1 as a novel target to treat inflammation-associated intestinal fibrosis.


Assuntos
Fibrose/metabolismo , Inflamação/metabolismo , Miofibroblastos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Células Cultivadas , Humanos , Intestinos/patologia , Camundongos , Transdução de Sinais/fisiologia
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668926

RESUMO

Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of ß-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions.


Assuntos
Nucléolo Celular/metabolismo , Crescimento Neuronal , Ribossomos/metabolismo , Canais de Cátion TRPV/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta-Arrestina 2/metabolismo , Animais , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nucleofosmina , Ligação Proteica , Transporte Proteico , Proteômica , RNA Polimerase I/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G718-G732, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026824

RESUMO

The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.


Assuntos
Fenômenos Fisiológicos do Sistema Digestório , Sistema Digestório/inervação , Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Animais , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Humanos
10.
J Neural Transm (Vienna) ; 127(4): 445-465, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31552496

RESUMO

Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.


Assuntos
Transtorno do Espectro Autista , Dor Crônica , Cistite Intersticial , Disbiose , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Neurônios Aferentes , Nociceptividade/fisiologia , Dor Visceral , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Dor Crônica/etiologia , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Cistite Intersticial/etiologia , Cistite Intersticial/imunologia , Cistite Intersticial/metabolismo , Cistite Intersticial/fisiopatologia , Disbiose/complicações , Disbiose/imunologia , Disbiose/metabolismo , Disbiose/fisiopatologia , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Neurônios Aferentes/imunologia , Neurônios Aferentes/metabolismo , Neurônios Aferentes/microbiologia , Dor Visceral/etiologia , Dor Visceral/imunologia , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 114(42): 11235-11240, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973941

RESUMO

Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.


Assuntos
Colite/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Microglia/metabolismo , Medula Espinal/metabolismo , Dor Visceral/etiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Catepsinas/metabolismo , Linhagem Celular , Colite/induzido quimicamente , Sulfato de Dextrana , Gânglios Espinais/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Dor Visceral/metabolismo
12.
Pharmacol Rev ; 68(4): 1110-1142, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27677721

RESUMO

Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.

13.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27558883

RESUMO

BACKGROUND: Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. RESULTS: We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. CONCLUSIONS: Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Alcaloides/farmacologia , Animais , Anti-Helmínticos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Capsaicina/farmacologia , Células Cultivadas , Césio/farmacologia , Cloretos/farmacologia , Inibidores Enzimáticos/farmacologia , Adjuvante de Freund/toxicidade , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Guanidinas/farmacologia , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Neurônios/efeitos dos fármacos , Dor/etiologia , Dor/metabolismo , Dor/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Quinolizinas/farmacologia , Ratos , Canais de Cátion TRPV/genética , Matrinas
14.
Am J Physiol Gastrointest Liver Physiol ; 310(8): G574-85, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744469

RESUMO

Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder. It is characterized by abdominal hypersensitivity, leading to discomfort and pain, as well as altered bowel habits. While it is common for IBS to develop following the resolution of infectious gastroenteritis [then termed postinfectious IBS (PI-IBS)], the mechanisms remain incompletely understood. Giardia duodenalis is a cosmopolitan water-borne enteropathogen that causes intestinal malabsorption, diarrhea, and postinfectious complications. Cause-and-effect studies using a human enteropathogen to help investigate the mechanisms of PI-IBS are sorely lacking. In an attempt to establish causality between giardiasis and postinfectious visceral hypersensitivity, this study describes a new model of PI-IBS in neonatal rats infected with G. duodenalis At 50 days postinfection with G. duodenalis (assemblage A or B), long after the parasite was cleared, rats developed visceral hypersensitivity to luminal balloon distension in the jejunum and rectum, activation of the nociceptive signaling pathway (increased c-fos expression), histological modifications (villus atrophy and crypt hyperplasia), and proliferation of mucosal intraepithelial lymphocytes and mast cells in the jejunum, but not in the rectum. G. duodenalis infection also disrupted the intestinal barrier, in vivo and in vitro, which in turn promoted the translocation of commensal bacteria. Giardia-induced bacterial paracellular translocation in vitro correlated with degradation of the tight junction proteins occludin and claudin-4. The extensive observations associated with gut hypersensitivity described here demonstrate that, indeed, in this new model of postgiardiasis IBS, alterations to the gut mucosa and c-fos are consistent with those associated with PI-IBS and, hence, offer avenues for new mechanistic research in the field.


Assuntos
Microbioma Gastrointestinal , Giardíase/complicações , Síndrome do Intestino Irritável/etiologia , Migração Transcelular de Célula , Animais , Células CACO-2 , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Feminino , Giardíase/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/parasitologia , Masculino , Nociceptividade , Ratos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(18): 7476-81, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23596210

RESUMO

Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis. TRPM8 expression, localized immunohistochemically in transgenic TRPM8(GFP) mouse colon, was up-regulated in both human- and murine-inflamed colon samples, as measured by real-time PCR. Wild-type mice (but not TRPM8-nulls) treated systemically with the TRPM8 agonist, icilin showed an attenuation of chemically induced colitis, as reflected by a decrease in macroscopic and microscopic damage scores, bowel thickness, and myeloperoxidase activity compared with untreated animals. Furthermore, icilin treatment reduced the 2,4,6-trinitrobenzenesulfonic acid-induced increase in levels of inflammatory cytokines and chemokines in the colon. In comparison with wild-type mice, Dextran Sodium Sulfate (DSS)-treated TRPM8 knockout mice showed elevated colonic levels of the inflammatory neuropeptide calcitonin-gene-related peptide, although inflammatory indices were equivalent for both groups. Further, TRPM8 activation by icilin blocked capsaicin-triggered calcitonin-gene-related peptide release from colon tissue ex vivo and blocked capsaicin-triggered calcium signaling in Transient Receptor Potential Vaniloid-1 (TRPV1) and TRPM8 transfected HEK cells. Our data document an anti-inflammatory role for TRPM8 activation, in part due to an inhibiton of neuropeptide release, pointing to a novel therapeutic target for colitis and other inflammatory diseases.


Assuntos
Colite/patologia , Colite/fisiopatologia , Inflamação/patologia , Inflamação/fisiopatologia , Ativação do Canal Iônico , Canais de Cátion TRPM/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sinalização do Cálcio , Quimiocinas/metabolismo , Colite/complicações , Colite/tratamento farmacológico , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/metabolismo , Ácido Trinitrobenzenossulfônico
16.
J Biol Chem ; 289(24): 16675-87, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24808184

RESUMO

The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief.


Assuntos
Hiperalgesia/metabolismo , Multimerização Proteica , Canais de Cátion TRPV/metabolismo , Motivos de Aminoácidos , Animais , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Sítios de Ligação , Deleção de Genes , Células HEK293 , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
17.
Am J Physiol Gastrointest Liver Physiol ; 309(2): G87-99, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26021808

RESUMO

Quiescent phases of inflammatory bowel disease (IBD) are often accompanied by chronic abdominal pain. Although the transient receptor potential vanilloid 1 (TRPV1) ion channel has been postulated as an important mediator of visceral hypersensitivity, its functional role in postinflammatory pain remains elusive. This study aimed at establishing the role of TRPV1 in the peripheral sensitization underlying chronic visceral pain in the context of colitis. Wild-type and TRPV1-deficient mice were separated into three groups (control, acute colitis, and recovery), and experimental colitis was induced by oral administration of dextran sulfate sodium (DSS). Recovery mice showed increased chemically and mechanically evoked visceral hypersensitivity 5 wk post-DSS discontinuation, at which point inflammation had completely resolved. Significant changes in nonevoked pain-related behaviors could also be observed in these animals, indicative of persistent discomfort. These behavioral changes correlated with elevated colonic levels of substance P (SP) and TRPV1 in recovery mice, thus leading to the hypothesis that SP could sensitize TRPV1 function. In vitro experiments revealed that prolonged exposure to SP could indeed sensitize capsaicin-evoked currents in both cultured neurons and TRPV1-transfected human embryonic kidney (HEK) cells, a mechanism that involved TRPV1 ubiquitination and subsequent accumulation at the plasma membrane. Importantly, although TRPV1-deficient animals experienced similar disease severity and pain as wild-type mice in the acute phase of colitis, TRPV1 deletion prevented the development of postinflammatory visceral hypersensitivity and pain-associated behaviors. Collectively, our results suggest that chronic exposure of colon-innervating primary afferents to SP could sensitize TRPV1 and thus participate in the establishment of persistent abdominal pain following acute inflammation.


Assuntos
Dor Abdominal/metabolismo , Colite/metabolismo , Colo/inervação , Hiperalgesia/metabolismo , Limiar da Dor , Canais de Cátion TRPV/metabolismo , Dor Visceral/metabolismo , Dor Abdominal/induzido quimicamente , Dor Abdominal/genética , Dor Abdominal/fisiopatologia , Doença Aguda , Animais , Comportamento Animal , Colite/induzido quimicamente , Colite/genética , Colite/fisiopatologia , Sulfato de Dextrana , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Aferentes/metabolismo , Medição da Dor , Transdução de Sinais , Substância P/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Fatores de Tempo , Transfecção , Dor Visceral/induzido quimicamente , Dor Visceral/genética , Dor Visceral/fisiopatologia
18.
Pflugers Arch ; 466(11): 2113-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24566975

RESUMO

Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Células Cultivadas , Células HEK293 , Hipocampo/metabolismo , Humanos , Imunoprecipitação/métodos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo
19.
Cell Tissue Res ; 356(2): 309-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24715114

RESUMO

Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.


Assuntos
Colite/patologia , Gânglios Espinais/patologia , Intestinos/patologia , Plasticidade Neuronal , Células do Corno Posterior/imunologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Inflamação/imunologia , Inflamação/patologia , Intestinos/imunologia , Região Lombossacral/inervação , Masculino , Camundongos , Dor , Células do Corno Posterior/patologia , Substância P/imunologia
20.
Cannabis Cannabinoid Res ; 9(1): 3-11, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883662

RESUMO

Cannabis and cannabis products are becoming increasingly popular options for symptom management of inflammatory bowel diseases, particularly abdominal pain. While anecdotal and patient reports suggest efficacy of these compounds for these conditions, clinical research has shown mixed results. To date, clinical research has focused primarily on delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is a ligand of classical cannabinoid receptors (CBRs). CBD is one of a large group of nonintoxicating cannabinoids (niCBs) that mediate their effects on both CBRs and through non-CBR mechanisms of action. Because they are not psychotropic, there is increasing interest and availability of niCBs. The numerous niCBs show potential to rectify abnormal intestinal motility as well as have anti-inflammatory and analgesic effects. The effects of niCBs are frequently not mediated by CBRs, but rather through actions on other targets, including transient receptor potential channels and voltage-gated ion channels. Additionally, evidence suggests that niCBs can be combined to increase their potency through what is termed the entourage effect. This review examines the pre-clinical data available surrounding these niCBs in treatment of abdominal pain with a focus on non-CBR mechanisms.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Dor Visceral , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Dor Visceral/tratamento farmacológico , Canabidiol/farmacologia , Dor Abdominal/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA